Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Analysis of NOx Emissions during Crank-Start and Cold Fast-Idle in a GDI Engine

2017-03-28
2017-01-0796
The NOx emissions during the crank-start and cold fast-idle phases of a GDI engine are analyzed in detail. The NOx emissions of the first 3 firing cycles are studied under a wide set of parameters including the mass of fuel injected, start of injection, and ignition timing. The results show a strong dependence of the NOx emissions with injection timing; they are significantly reduced as the mixture is stratified. The impact of different valve timings on crank-start NOx emissions was analyzed. Late intake and early exhaust timings show similar potential for NOx reduction; 26-30% lower than the baseline. The combined strategy, resulting in a large symmetric negative valve overlap, shows the greatest reduction; 59% lower than the baseline. The cold fast-idle NOx emissions were studied under different equivalence ratios, injection strategies, combustion phasing, and valve timings. Slightly lean air-fuel mixtures result in a significant reduction of NOx.
Journal Article

Cycle-by-Cycle Analysis of Cold Crank-Start in a GDI Engine

2016-04-05
2016-01-0824
The first 3 cycles in the cold crank-start process at 20°C are studied in a GDI engine. The focus is on the dependence of the HC and PM/PN emissions of each cycle on the injection strategy and combustion phasing of the current and previous cycles. The PM/PN emissions per cycle decrease by more than an order of magnitude as the crank-start progresses from the 1st to the 3rd cycle, while the HC emissions stay relatively constant. The wall heat transfer, as controlled by the combustion phasing, during the previous cycles has a more significant influence on the mixture formation process for the current cycle than the amount of residual fuel. The results show that the rise in HC emissions caused by the injection spray interacting with the intake valves and piston crown is reduced as the cranking process progresses. Combustion phasing retard significantly reduces the PM emission. The HC emissions, however, are relatively not sensitive to combustion phasing in the range of interest.
Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

2016-04-05
2016-01-0827
This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Ignition Delay Correlation for Engine Operating with Lean and with Rich Fuel-Air Mixtures

2016-04-05
2016-01-0699
An ignition delay correlation encompassing the effects of temperature, pressure, residual gas, EGR, and lambda (on both the rich and lean sides) has been developed. The procedure uses the individual knocking cycle data from a boosted direct injection SI engine (GM LNF) operating at 1250 to 2000 rpm, 8-14 bar GIMEP, EGR of 0 to 12.5%, and lambda of 0.8 to 1.3 with a certification fuel (Haltermann 437, with RON=96.6 and MON=88.5). An algorithm has been devised to identify the knock point on individual pressure traces so that the large data set (of some thirty three thousand cycles) could be processed automatically. For lean and for rich operations, the role of the excess fuel, air, and recycled gas (which has excess air in the lean case, and hydrogen and carbon monoxide in the rich case) may be treated effectively as diluents in the ignition delay expression.
Journal Article

On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

2014-04-01
2014-01-1368
Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm range was measured as a function of the injection timing with single pulse injection and with split injection. Very low PN emissions were observed when injection took place in the mid intake stroke because of the fast fuel evaporation and mixing processes which were facilitated by the high turbulent kinetic energy created by the intake charge motion. Under these conditions, substantial liquid fuel film formation on the combustion chamber surfaces was avoided. PN emissions increased when injection took place in the compression stroke, and increased substantially when the fuel spray hit the piston.
Technical Paper

Using Valve Timing and Exhaust Back Pressure to Improve Catalyst Warm-Up Time

2013-10-14
2013-01-2656
This work examines the effects of valve timing and back pressure on the engine out enthalpy flow which is critical to the light off of the catalyst. The engine behavior is observed under fast-idle condition using a turbocharged production direct injection spark ignition engine with variable cam phasing that could shift both the intake and exhaust valve timing by 50 deg. crank angle. The back pressure is adjusted by throttling the exhaust. The engine operates at a constant net indicated mean effective pressure of 2 bar. The valve timing effect is largely governed by the residual gas trapped. With increasing valve overlap, the exhaust enthalpy flow increases because of the increase in exhaust temperature due to a slower combustion, and of the increase in air and fuel flow to compensate for the lower efficiency due to the slower combustion. When the back pressure is increased, the engine through flow has to increase to compensate for the larger pumping loss.
Technical Paper

Assessing the Loss Mechanisms Associated with Engine Downsizing, Boosting and Compression Ratio Change

2013-04-08
2013-01-0929
The loss mechanisms associated with engine downsizing, boosting and compression ratio change are assessed. Of interest are the extents of friction loss, pumping loss, and crevice loss. The latter does not scale proportionally with engine size. These losses are deconstructed via a cycle simulation model which encompasses a friction model and a crevice loss model for engine displacement of 300 to 500 cc per cylinder. Boost pressure is adjusted to yield constant torque. The compression ratio is varied from 8 to 20. Under part load, moderate speed condition (1600 rpm; 13.4 Nm/cylinder brake torque), the pumping work reduces significantly with downsizing while the work loss associated with the crevice volume increases. At full load (1600 rpm; 43.6 Nm/cylinder brake torque), the pumping work is less significant. The crevice loss (normalized to the fuel energy) is essentially the same as in the part load case. The sensitivities of the respective loss terms to downsizing are reported.
Technical Paper

Effect of In-Cylinder Liquid Fuel Films on Engine-Out Unburned Hydrocarbon Emissions for an SI Engine

2012-09-10
2012-01-1712
An experimental study was performed in a firing SI engine at conditions representative of the warmup phase of operation in which liquid gasoline films were established at various locations in the combustion chamber and the resulting impact on hydrocarbon emissions was assessed. Unique about this study was that it combined, in a firing engine environment, direct visual observation of the liquid fuel films, measurements of the temperatures these films were subjected to, and the determination from gas analyzers of burned and unburned fuel quantities exiting the combustion chamber - all with cycle-level resolution or better. A means of deducing the exhaust hydrocarbon emissions that were due to the liquid fuel films in the combustion chamber was developed. An increase in exhaust hydrocarbon emissions was always observed with liquid fuel films present in the combustion chamber.
Journal Article

EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation

2012-04-16
2012-01-0707
The effects of cooled exhaust gas recirculation (EGR) on a boosted direct-injection (DI) spark ignition (SI) engine operating at stoichiometric equivalence ratio, gross indicated mean effective pressure of 14-18 bar, and speed of 1500-2500 rpm, are studied under constant fuel condition at each operating point. In the presence of EGR, burn durations are longer and combustion is more retard. At the same combustion phasing, the indicated specific fuel consumption improves because of a decrease in heat loss and an increase in the specific heat ratio. The knock limited spark advance increases substantially with EGR. This increase is due partly to a slower combustion which is equivalent to a spark retard, as manifested by a retarded value of the 50% burn point (CA50), and due partly to a slower ignition chemistry of the diluted charge, as manifested by the knock limited spark advance to beyond the value offered by the retarded CA50.
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

On the High Load Limit of Boosted Gasoline HCCI Engine Operating in NVO Mode

2010-04-12
2010-01-0162
The high load limit of a boosted homogeneous-charge-compression-ignition (HCCI) engine operating on negative-valve-overlap (NVO) was assessed. When operating under stoichiometric condition with no external dilution, the load, as measured by the net indicated mean effective pressure (NIMEP), increased with increase in manifold absolute pressure (MAP), and with decrease in trapped amount of residual gas. The maximum pressure rise rate (MPRR), however, also increased correspondingly. When the MAP and the amount of residual gas were adjusted so that the engine operating point could be held at a constant MPRR value, the NIMEP increased with the simultaneous decrease in MAP and residual until the misfire limit was reached. Therefore if a MPRR ceiling is imposed, the high load limit of an HCCI engine is at the intersection of the constraining MPRR line and the misfire line.
Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

2009-06-15
2009-01-1892
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
Technical Paper

Influence of Intake Port Charge-Motion-Control-Valve on Mixture Preparation in a Port-Fuel-Injection Engine

2007-10-29
2007-01-4013
The effects of the directed port flow produced by a Charge-Motion-Control-Valve (CMCV) on mixture preparation in a Port-Fuel-Injection engine were assessed under conditions typical of fast idle in a cold start process. The port fuel was found to comprise two components: a “valve” puddle (at the vicinity of the valve) that built up quickly, and that was mainly responsible for the delivery of the fuel to the cylinder charge; a “port” puddle located significantly upstream. The latter was mainly created by the reverse back flow process and built up slowly. Although the fuel amounts in these two components were roughly the same, the latter did not significantly interact with the fuel transport to the cylinder charge. The CMCV only weakly affected the purging or filling time of the valve puddle, hence the dynamics of the fuel delivery process was not materially affected.
Technical Paper

On HCCI Engine Knock

2007-07-23
2007-01-1858
Knock in a HCCI engine was examined by comparing subjective evaluation, recorded sound radiation from the engine, and cylinder pressure. Because HCCI combustion involved simultaneous heat release in a spatially large region, substantial oscillations were often found in the pressure signal. The time development of the audible signal within a knock cycle was different from that of the pressure trace. Thus the audible signal was not the attenuated transmission of the cylinder pressure oscillation but the sound radiation from the engine structure vibration excited by the initial few cycles of pressure oscillation. A practical knock limited maximum load point for the specific 2.3 L I4 engine under test (and arguably for engines of similar size and geometry) was defined at when the maximum rate of cycle-averaged pressure rise reached 5 MPa/ms.
Technical Paper

Effect of Air Temperature and Humidity on Gasoline HCCI Operating in the Negative-Valve-Overlap Mode

2007-04-16
2007-01-0221
The impact of intake air temperature and humidity on gasoline HCCI engine operation was assessed. The 2.3 L I4 production engine modified for single cylinder operation was controlled by using variable cam phasing on both the intake and exhaust valve in the negative-valve-overlap mode. Exhaust cam phasing was mainly used to control load, and intake cam phasing was mainly used to control combustion phasing. At stoichiometric condition, higher intake air temperature advanced combustion phasing and promoted knock, resulting in a 19% reduction of the Net Indicated Mean Effective Pressure (NIMEP) at the high load limit at 1500 rpm when intake temperature was changed from −10 to 100° C. Higher ambient humidity delayed combustion phasing. For stoichiometric operation, this delay allowed a small extension (a few tenths of a bar in NIMEP) in the high load limit when the moisture concentration was changed from 3 to 30 g/m3 (corresponding to 10-100% relative humidity at 28° C).
Technical Paper

A Novel Strategy for Fast Catalyst Light-Off without the Use of an Air Pump

2007-01-23
2007-01-0044
A novel engine management strategy for achieving fast catalyst light-off without the use of an exhaust air pump in a port-fuel-injected, spark ignition engine was developed. A conventional 4-cylinder engine was operated with three cylinders running rich and the fourth one as an air pump to supply air to the exhaust manifold. Under steady-state cold coolant conditions, this strategy achieved near total oxidation of CO and HC with sufficiently retarded spark timing, resulting in a 400% increase in feedgas enthalpy flow and a 90% reduction in feedgas HC emissions compared to conventional operation. The strategy was also evaluated for crank starts. Using the existing engine hardware, implementing the strategy resulted in a reduction in catalyst light-off time from 28.0 seconds under conventional operation to 9.1 seconds.
Technical Paper

Phenomena that Determine Knock Onset in Spark-Ignition Engines

2007-01-23
2007-01-0007
Experiments were carried out to collect in-cylinder pressure data and microphone signals from a single-cylinder test engine using spark timingsbefore, at, and after knock onset for toluene reference fuels. The objective was to gain insight into the phenomena that determine knock onset, detected by an external microphone. In particular, the study examines how the end-gas autoignition process changes as the engine's spark timing is advanced through the borderline knock limit into the engine's knocking regime. Fast Fourier transforms (FFT) and bandpass filtering techniques were used to process the recorded cylinder pressure data to determine knock intensities for each cycle. Two characteristic pressure oscillation frequencies were detected: a peak just above 6 kHz and a range of peaks in the 15-22 kHz range. The microphone data shows that the audible knock signal has the same 6 kHz peak.
Technical Paper

Effects of Combustion Phasing, Relative Air-fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency

2006-04-03
2006-01-0229
In an effort to both increase engine efficiency and generate new, consistent, and reliable data useful for the development of engine concepts, a modern single-cylinder 4-valve spark-ignition research engine was used to determine the response of indicated engine efficiency to combustion phasing, relative air-fuel ratio, compression ratio, and load. Combustion modeling was then used to help explain the observed trends, and the limitations on achieving higher efficiency. This paper analyzes the logic behind such gains in efficiency and presents correlations of the experimental data. The results are helpful for examining the potential for more efficient engine designs, where high compression ratios can be used under lean or dilute regimes, at a variety of loads.
Technical Paper

Mixture Preparation Mechanisms in a Port Fuel Injected Engine

2005-05-11
2005-01-2080
An experimental study was carried out that qualitatively examined the mixture preparation process in port fuel injected engines. The primary variables in this study were intake valve lift, intake valve timing, injector spray quality, and injection timing. A special visualization engine was used to obtain high-speed videos of the fuel-air mixture flowing through the intake valve, as well as the wetting of the intake valve and head in the combustion chamber. Additionally, videos were taken from within the intake port using a borescope to examine liquid fuel distribution in the port. Finally, a simulation study was carried out in order to understand how the various combinations of intake valve lifts and timings affect the flow velocity through the intake valve gap to aid in the interpretation of the videos.
X