Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Testing of a Plastic Melt Waste Compactor Designed for Human Space Exploration Missions

2009-07-12
2009-01-2363
Significant progress has been made at NASA Ames Research Center in the development of a heat melt compaction device called the Plastic Melt Waste Compactor (PMWC). The PMWC was designed to process wet and dry wastes generated on human space exploration missions. The wastes have a plastic content typically greater than twenty percent. The PMWC removes the water from the waste, reduces the volume, and encapsulates it by melting the plastic constituent of the waste. The PMWC is capable of large volume reductions. The final product is compacted waste disk that is easy to manage and requires minimal crew handling. This paper describes the results of tests conducted using the PMWC with a wet and dry waste composite that was representative of the waste types expected to be encountered on long duration human space exploration missions.
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Odors in Space Environments - Sources and Control Strategies

2007-07-09
2007-01-3269
Management of human feces and wastes is a major challenge in space vehicles due to the potential biohazards and malodorous compounds emanating during collection and storage of feces and wastes. To facilitate safe, yet realistic human waste management research, we have previously developed human fecal simulants for research activities. The odoriferous compounds in feces and wastes reduce the quality of life for astronauts, can reduce performance, and can even cause health problems. The major odoriferous compounds of concern belong to four groups of chemicals, volatile fatty acids, volatile sulfurous compounds, nitrogenous compounds and phenols. This paper attempts to review the problem of odor detection and odor control with advanced technology. There has been considerable progress in odor detection and control in the animal industry and in the dental profession.
Technical Paper

Waste Compaction Technology Development for Human Space Exploration Missions

2007-07-09
2007-01-3265
Waste management is a critical component of life support systems for manned space exploration. Human occupied spacecraft and extraterrestrial habitats must be able to effectively manage the waste generated throughout the entire mission duration. The requirements for waste systems may vary according to specific mission scenarios but all waste management operations must allow for the effective collection, containment, processing, and storage of unwanted materials. NASA's Crew Exploration Vehicle usually referred to as the CEV, will have limited volume for equipment and crew. Technologies that reduce waste storage volume free up valuable space for other equipment. Waste storage volume is a major driver for the Orion waste compactor design. Current efforts at NASA Ames Research Center involve the development of two different prototype compactors designed to minimize trash storage space.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer

2006-07-17
2006-01-2185
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)- driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

A Prototype Pyrolysis / Oxidation System for Solid Waste Processing

2005-07-11
2005-01-3083
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid liquid and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process, which is insensitivity to product mix, no O2 consumption, and batch processing, in the case of pyrolysis, and simplicity of the product effluent stream in the case of oxidation. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (ESM) and system complexity.
Technical Paper

The Development of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Engineering Development Unit

2004-07-19
2004-01-2495
This paper presents the results of a program to develop the next generation Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a spacecraft water recycling system designed by NASA and constructed by Water Reuse Technology Inc. The technology has been identified by NASA to be the next generation water recycling system [1]. It is designed specifically for a Mars transit vehicle mission. This paper provides a description of the process and an evaluation of the performance of the new system. The equivalent system mass (ESM) is calculated and compared to the existing state-of-the art. A description of the contracting mechanism used to construct the new system is also provided.
Technical Paper

Development of Plastic Melt Waste Compactor for Space Missions - Experiments and Prototype Design

2004-07-19
2004-01-2378
This paper describes current work at NASA Ames Research Center on the development of a heat melt compactor that can be used on both near term and far term missions. Preliminary tests have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Preliminary tests were conducted to characterize the volume reduction, bonding, encapsulation and plastic extrusion of the waste composite. The preliminary tests are designed to provide the data needed to design the first prototype Plastic Melt Waste Compactor.
Technical Paper

Lyophilization for Water Recovery II, Model Validation

2004-07-19
2004-01-2377
This paper presents results of research on a solid waste dryer, based of the process of lyophilization, which recovers water and stabilizes solid waste. A lyophilizer has been developed and tested that uses thermoelectric heat pumps (TECs) to recycle heat during drying. The properties of TECs facilitate direct measurement of heat flow rates, and heat flow data are used to evaluate a heat and mass transfer model of the thermoelectric lyophilizer. Data are consistent with the theoretical model in most respects. Practical problems such as insulation and vacuum maintenance are minor in this system. However, the model’s assumption of a uniformly retreating ice layer during drying is valid only for the first 30% of water removed. Beyond this point, a shrinking core or lens model is more appropriate. Heat transfer to the shrinking core surrounded by dried material is slow.
Technical Paper

Plastic Waste Processing and Volume Reduction for Resource Recovery and Storage in Space

2003-07-07
2003-01-2369
This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions. The heat melt compactor can handle wastes with a significant plastic composition and minimize crew interaction. The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such as plastic food packaging and trash are compacted manually and wrapped in duct taped “footballs” by the astronauts. Much of the waste is simply loaded into the empty Russian Progress spacecraft that is used to bring supplies to ISS. The progress spacecraft and its contents are intentionally burned up in the earth's atmosphere during reentry. This manual method of trash management on ISS is a wasteful use of crew time and does not transition well to far term missions.
Technical Paper

Solids Waste Processing and Resource Recovery for Long-Duration Missions – A Workshop

2001-07-09
2001-01-2351
Future long-duration human space exploration missions will require increased system autonomy and reliability with fidelities beyond the present level of life support technology. Long-duration planetary missions will require Advanced Life Support (ALS) systems to provide methods for crop and food production, air and water recycling, and solid waste resource recovery. Among these principal life support functional areas, solid waste processing will need significant development. Because of this need, a solid waste processing and resource recovery (SWPRR) workshop was held in April 2000, to assess solid waste processing technologies. The purpose of the workshop was to gather data and provide input to the National Aeronautics and Space Administration (NASA) for a solid waste processing research and technology development (R&TD) strategy. This paper discusses the workshop assessment methodology and the results.
Technical Paper

Solid Waste Processing - An Essential Technology for the Early Phases of Mars Exploration and Colonization

1997-07-01
972272
Terraforming of Mars is the long-term goal of colonization of Mars. However, this process is likely to be a very slow process and conservative estimates involving a synergetic, technocentric approach suggest that it may take around 10,000 years before the planet can be parallel to that of Earth and where humans can live in open systems (Fogg, 1995). Hence, for the foreseeable future, any missions will require habitation within small confined habitats with high biomass to atmospheric mass ratios, thereby requiring that all wastes be recycled. Processing of the wastes will ensure predictability and reliability of the ecosystem and reduce resupply logistics. Solid wastes, though smaller in volume and mass than the liquid wastes, contain more than 90% of the essential elements required by humans and plants.
X