Refine Your Search

Topic

Search Results

Journal Article

Analytical Examination of the Relationship between Fuel Properties, Engine Efficiency, and R Factor Values

2019-04-02
2019-01-0309
The variability in gasoline energy content, though most frequently not a consumer concern, is an issue of concern for vehicle manufacturers in demonstrating compliance with regulatory requirements. Advancements in both vehicle technology, test methodology, and fuel formulations have increased the level of visibility and concern with regard to the energy content of fuels used for regulatory testing. The R factor was introduced into fuel economy calculations for vehicle certification in the late 1980s as a means of addressing batch-to-batch variations in the heating value of certification fuels and the resulting variations in fuel economy results. Although previous studies have investigated values of the R factor for modern vehicles through experimentation, subsequent engine studies have made clear that it is difficult to distinguish between the confounding factors that influence engine efficiency when R is being studied experimentally.
Journal Article

Estimation of the Fuel Efficiency Potential of Six Gasoline Blendstocks Identified by the U.S. Department of Energy’s Co-Optimization of Fuels and Engines Program

2019-01-15
2019-01-0017
Six blendstocks identified by the Co-Optimization of Fuels & Engines Program were used to prepare fuel blends using a fixed blendstock for oxygenate blending and a target RON of 97. The blendstocks included ethanol, n-propanol, isopropanol, isobutanol, diisobutylene, and a bioreformate surrogate. The blends were analyzed and used to establish interaction factors for a non-linear molar blending model that was used to predict RON and MON of volumetric blends of the blendstocks up to 35 vol%. Projections of efficiency increase, volumetric fuel economy increase, and tailpipe CO2 emissions decrease were produced using two different estimation techniques to evaluate the potential benefits of the blendstocks. Ethanol was projected to provide the greatest benefits in efficiency and tailpipe CO2 emissions, but at intermediate levels of volumetric fuel economy increase over a smaller range of blends than other blendstocks.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Technical Paper

Filter-based control of particulate matter from a lean gasoline direct injection engine

2016-04-05
2016-01-0937
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal.
Journal Article

Determination of the R Factor for Fuel Economy Calculations Using Ethanol-Blended Fuels over Two Test Cycles

2014-04-01
2014-01-1572
During the 1980s, the U.S. Environmental Protection Agency (EPA) incorporated the R factor into fuel economy calculations in order to address concerns about the impacts of test fuel property variations on corporate average fuel economy (CAFE) compliance, which is determined using the Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) cycles. The R factor is defined as the ratio of the percent change in fuel economy to the percent change in volumetric heating value for tests conducted using two differing fuels. At the time the R-factor was devised, tests using representative vehicles initially indicated that an appropriate value for the R factor was 0.6. Reassessing the R factor has recently come under renewed interest after EPA's March 2013 proposal to adjust the properties of certification gasoline to contain significant amounts of ethanol.
Technical Paper

Effectiveness Stabilization and Plugging in EGR Cooler Fouling

2014-04-01
2014-01-0640
Fouling in EGR coolers occurs because of the presence of soot and condensable species (such as hydrocarbons) in the gas stream. Fouling leads to one of two possible outcomes: stabilization of effectiveness and plugging of the gas passages within the cooler. Deposit formation in the cooler under high-temperature conditions results in a fractal deposit that has a characteristic thermal conductivity of ∼0.033 W/m*K and a density of 0.0224 g/cm3. Effectiveness becomes much less sensitive to changes in thermal resistance as fouling proceeds, creating the appearance of “stabilization” even in the presence of ongoing, albeit slow, deposit growth. Plugging occurs when the deposit thermal resistance is several times lower because of the presence of large amounts of condensed species. The deposition mechanism in this case appears to be soot deposition into a liquid film, which results in increased packing efficiency and decreased void space in the deposit relative to high-temperature deposits.
Technical Paper

Neutron Tomography of Exhaust Gas Recirculation Cooler Deposits

2014-04-01
2014-01-0628
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOx emissions standards. Exhaust gas laden with particulate matter flows through the EGR cooler which causes deposits to form through thermophoresis and condensation. The low thermal conductivity of the resulting deposit reduces the effectiveness of the EGR system. In order to better understand this phenomenon, industry-provided coolers were characterized using neutron tomography. Neutrons are strongly attenuated by hydrogen but only weakly by metals which allows for non-destructive imaging of the deposit through the metal heat exchanger. Multiple 2-D projections of cooler sections were acquired by rotating the sample around the axis of symmetry with the spatial resolution of each image equal to ∼70 μm. A 3-D tomographic set was then reconstructed, from which slices through the cooler sections were extracted across different planes.
Journal Article

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

2012-04-16
2012-01-0883
Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate.
Technical Paper

Exhaust Particle Characterization for Lean and Stoichiometric DI Vehicles Operating on Ethanol-Gasoline Blends

2012-04-16
2012-01-0437
Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port-fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Journal Article

Characterization of Field-Aged EGR Cooler Deposits

2010-10-25
2010-01-2091
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with nitrogen oxides (NOx) emissions standards. In order to better understand fouling mechanisms, eleven field-aged EGR coolers provided by seven different engine manufacturers were characterized using a suite of techniques. Microstructures were characterized using scanning electron microscopy (SEM) and optical microscopy following mounting the samples in epoxy and polishing. Optical microscopy was able to discern the location of hydrocarbons in the polished cross-sections. Chemical compositions were measured using thermal gravimetric analysis (TGA), differential thermal analysis (DTA), gas chromatography-mass spectrometry (GC-MS), x-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). Mass per unit area along the length of the coolers was also measured.
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

2009-04-20
2009-01-1506
EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Journal Article

Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

2008-10-06
2008-01-2497
The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Technical Paper

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

2008-10-06
2008-01-2501
This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NOx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NOx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NOx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%).
Technical Paper

EGR Cooler Performance and Degradation: Effects of Biodiesel Blends

2008-10-06
2008-01-2473
Exhaust gas recirculation (EGR) coolers experience degradation of performance as a result of the buildup of material in the gas-side flow paths of the cooler. This material forms a deposit layer that is less thermally conductive than the stainless steel of the tube enclosing the gas, resulting in lower heat exchanger effectiveness. Biodiesel fuel has a fuel chemistry that is much more susceptible to polymerization than that of typical diesel fuels and may exacerbate deposit formation in EGR coolers. A study was undertaken to examine the fundamentals of EGR cooler deposit formation by using surrogate tubes to represent the EGR cooler. These tubes were exposed to engine exhaust in a controlled manner to assess their effectiveness, deposit mass, and deposit hydrocarbon content. The tubes were exposed to exhaust for varying lengths of time and for varying coolant temperatures. The results show that measurable differences in the response variables occur within a few hours.
Technical Paper

Partial Oxidation Products and other Hydrocarbon Species in Diesel HCCI Exhaust

2005-10-24
2005-01-3737
A single cylinder engine was operated in HCCI mode with diesel-range fuels, spanning a range in cetane number (CN) from 34 to 62. In addition to measurements of standard gaseous emissions (CO, HC, and NOx), multiple sampling and analysis techniques were used to identify and measure the individual exhaust HC species including an array of oxygenated compounds. A new analytical method, using liquid chromatography (LC) with electrospray ionization-mass spectrometry (ESI-MS) in tandem with ultraviolet (UV) detection, was developed to analyze the longer chain aldehydes as well as carboxylic acids. Results showed an abundance of formic and butyric acid formation at or near the same concentration levels as formaldehyde and other aldehydes.
Technical Paper

Exhaust Chemistry of Low-NOX, Low-PM Diesel Combustion

2004-03-08
2004-01-0114
The exhaust chemistry of combustion regimes characterized by simultaneous low-NOX and low-PM emissions were investigated on a Mercedes 1.7-L diesel engine. Two approaches for entering low-NOX low-PM regimes were explored using a California specification low aromatic certification diesel fuel. Detailed characterizations of gas-phase hydrocarbons, particulate soluble organics, and aldehydes are presented for both approaches. Results indicate significant formation of partially oxygenated hydrocarbons and fuel reformation products during periods of low-NOX, low-PM combustion.
X