Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion

2017-03-28
2017-01-0750
The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30 °C. Possibly increasing intake air temperatures could extend the load range. In this study primary reference fuels (PRFs), blends of iso-octane and n-heptane, with octane numbers of 70, 80, and 90 are tested in an adapted commercial diesel engine under partially premixed combustion mode to investigate the potential of these higher octane number fuels in low load and idle conditions. During testing combustion phasing and intake air temperature are varied to investigate the combustion and emission characteristics under low load and idle conditions.
Journal Article

Lignin Derivatives as Potential Octane Boosters

2015-04-14
2015-01-0963
Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates such as MTBE, ETBE and ethanol, facilitated the removal of lead without sacrificing RON and MON. In recent years, however, legislation has been moving in the direction of curbing aromatic and olefin content in gasoline, owing to similar concerns as was the case for lead. Meanwhile, concerns over global warming and energy security have motivated research into renewable fuels. Amongst which are those derived from biomass. The feedstock of interest in this study is lignin, which, together with hemicellulose and cellulose, is amongst the most abundant organic compounds on the planet.
Technical Paper

The Effect of Molecular Structure on Soot Emission of a Heavy-Duty Compression-Ignition Engine

2013-10-14
2013-01-2693
Numerous previous studies have reported that the reduction of emissions by adapting oxygenated bio-fuels chiefly depend on the overall oxygen percentage of the blended oxygenates. However, the effect of molecular structures of the fuels has sometimes only been attributed to differences in auto-ignition quality (i.e. cetane number). In this paper, fuels with two kinds of molecular structures, namely linear and cyclic, have been studied. It reports on emissions tests on a modified in-line 6-cylinder DAF HD Diesel engine with several selected oxygenates mixed with diesel. Fuels in question here are from the non-oxygenates group: n-hexane and cyclohexane, and the oxygenate group: 1-hexanol and cyclohexanol. In order to isolate the effect of molecular structure, the blend compositions are chosen such that the overall oxygen fraction of all blends is the same.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Spray Analysis of the PFAMEN Injector

2013-09-08
2013-24-0036
In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The expected advantages of the so-called Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN) injector are lower soot- and CO2 emissions. However, from previous in-house measurements, it has been concluded that the emissions of the porous injector are still not satisfactory. Roughly, this may have multiple reasons. The first one is that the spray distribution is not good enough, the second one is that the droplet sizing is too big due to the lack of droplet breakup. Furthermore air entrainment into the fuel jets might be insufficient. All reasons lead to fuel rich zones and associated soot formation.
Technical Paper

Modeling of Conventional and Early Diesel Injection Combustion Characteristics using FGM Approach

2013-04-08
2013-01-1108
The wide range of diesel engine operating conditions demand for a robust combustion model to account for inherent changes. In this work, the Flamelet Generate Manifold (FGM) approach is applied, in STAR-CD framework, to simulate the conventional injection- and early injection-timing (PCCI like) combustion regimes. Igniting Counter flow Diffusion Flamelets (ICDFs) and Homogeneous Reactors (HRs) are used to tabulate chemistry for conventional and PCCI combustion modes, respectively. The validation of the models with experimental data shows that the above consideration of chemistry tabulation results in accurate ignition delay predictions. The study reveals that a moderate amount of 5 different pressure levels is necessary to include in the FGM database to capture the ignition delay in both combustion regimes.
Technical Paper

Spray and Failure Analysis of Porous Injection Nozzles

2012-09-10
2012-01-1654
To improve the mixing of fuel and air in the combustion chamber of current diesel engines, research is carried out regarding injectors with a porous nozzle tip, replacing conventional nozzles with a limited number of holes. Preliminary tests with porous injectors showed that further research concerning spray distribution was necessary due to non-optimal spray shapes and low fuel velocities. Therefore, spray shapes and fuel velocities of porous injectors were examined at atmospheric pressures. These examinations show that the spray shapes can be adjusted by alternating the geometries. Geometrical influences have been studied and compared to conventional injectors, showing that the fuel velocity of the porous injectors has decreased with approximately a factor of 10. Subsequently, research concerning the lifetime of porous nozzles was necessary due to premature failure.
Technical Paper

Modeling Fuel Spray Auto-ignition using the FGM Approach: Effect of Tabulation Method

2012-04-16
2012-01-0157
The Flamelet Generated Manifold (FGM) method is a promising technique in engine combustion modeling to include tabulated chemistry. Different methodologies can be used for the generation of the manifold. Two approaches, based on igniting counterflow diffusion flamelets (ICDF) and homogeneous reactors (HR) are implemented and compared with Engine Combustion Network (ECN) experimental database for the baseline n-heptane case. Before analyzing the combustion results, the spray model is optimized after performing a sensitivity study with respect to turbulence models, cell sizes and time steps. The standard High Reynolds (Re) k-ε model leads to the best match of all turbulence models with the experimental data. For the convergence of the mixture fraction field an appropriate cell size is found to be smaller than that for an adequate spray penetration length which appears to be less influenced by the cell size.
Technical Paper

On the Application of the Flamelet Generated Manifold (FGM) Approach to the Simulation of an Igniting Diesel Spray

2010-04-12
2010-01-0358
A study on the modeling of fuel sprays in diesel engines will be presented. First, modeling of non-reacting diesel spray formation is studied in Fluent and Star-CD. The main objective however is to model combustion of the spray using a generic approach. This is achieved by applying a detailed chemistry tabulation method, called FGM (Flamelet Generated Manifold). Using this approach will make additional ignition modeling, which is conventional, obsolete. The FGM method is implemented in Fluent and Star-CD. Subsequently, constant volume spray combustion and full engine cycle simulations are performed. Spray formation is modeled with Lagrangian type models that are available in Fluent and Star-CD, and also with a 1D Euler-Euler spray model that is implemented and applied in 3D Fluent simulations. The results are compared with EHPC (Eindhoven High Pressure Cell) experiments, data from Sandia National Laboratories and IFP (Institut Français du Pétrole).
X