Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

EHC Design Options and Performance

Engine-aged EHC integrated cascades with equivalent overall volumes and several different design features were evaluated for FTP emission performance on a late-model V6 test vehicle. Design options evaluated included low and high cell densities (160 cpsi vs. 400 cpsi, a non-straight flow channel geometry (160 cpsi), and several low-power, zoned heating strategies (all with 160 cpsi). Cold-start hydrocarbon emission performance for the aged low cell density, high cell density, and non-straight channel designs (all with full face heating strategies) were found to be equivalent in the under-floor location used on the test vehicle in this program.
Technical Paper

EHC Impact on Extended Hot Soak Periods

Emission performance of a late model vehicle equipped with an electrically-heated catalytic converter (EHC) system was evaluated after extended vehicle soak periods that ranged from 30 to 180 minutes. As soak periods lengthened, NMHC and CO emissions measured in hot transient driving cycles increased by 125 percent and 345 percent, respectively. These tests were baseline operations which had no resistance heating or secondary air injection to the converter system. Sources of increased NMHC and CO emissions as a function of vehicle soak time were both the converter system cool-down characteristics and engine restart calibration strategy. For soak periods of 30 and 60 minutes, EHC resistance heating without secondary air injection resulted in large improvements in NMHC and CO emission performance (i.e., 74 percent and 54 percent lower NMHC emissions versus no heat, no air operation after a 30- and 60-minute period, respectively).
Technical Paper

Alternative EHC Heating Patterns and Their Impact on Cold-Start Emissions Performance

EHC heating patterns which utilize zones covering less than the available inlet face cross-sectional area have been evaluated for cold-start FTP performance. Both NMHC and CO cold-start emission performance were found to be significantly reduced relative to an EHC-inactive basecase for heating patterns that covered as little as 44% of the cross-section. In low-mileage tests, NMHC and CO cold-start emission dependencies on heating patterns were found to be relatively constant for patterns with heating coverages of 44% or more of the inlet face cross-sectional area. In these low mileage tests, reductions in Bag 1 FTP NMHC and CO emissions averaged about 30% lower with the preferred zoned heating patterns relative to the EHC-inactive basecase. FTP tests run on a similar engine-aged EHC showed less asymptotic dependence on EHC zoned heating strategies.
Technical Paper

Electrically Heated Catalysts and Reformulated Gasolines

A 1991 Volvo model 960 equipped with an electrically heated catalytic converter system (EHC) was evaluated in multiple FTP tests with three different gasolines: current certification fuel, the Auto/Oil industry average fuel (RF-A), and a fuel that meets the 1996 California Phase II reformulated gasoline standards. Tests of each fuel were run with a low-mileage EHC located upstream of either a low-mileage stock main converter or a stock converter that had been road aged for 100,000 miles under European driving conditions. Test results with EHC operation showed significant variations in NMHC, CO, and NOX emissions with the three test fuels. NMHC emissions were 2-2.5 times lower for the Phase II fuel versus RF-A, with the certification fuel intermediate in NMHC emissions. Tests with the EHC/high-mileage converter system exhibited higher overall FTP emissions compared to the EHC/low-mileage main converter system, as expected.
Technical Paper

Electrically Heated Metal Substrate Durability

Emission performance of an electrically heated catalytic converter is presented for both low-mileage tests and after exhaust aging using a 300 h dynamometer schedule. The aged converter system maintained its ability to significantly reduce cold start hydrocarbon and CO emissions on a late model gasoline-fueled passenger car. In these tests HC and CO emissions were reduced by 76% and 92%, respectively, during the first 140 seconds of the FTP urban driving cycle by operating the aged converter with resistance heating and air injection, in comparison to operation of the same aged converter in an unheated configuration. These reductions for heated operation versus unheated operation were comparable to the 80% HC and 96% CO cold start emission reductions observed in low-mileage testing of the same converter.