Refine Your Search

Search Results

Technical Paper

An Effect of Cooled-EGR on Diesel Engine Performance Fueled with Coconut-oil Methyl Ester

2020-01-24
2019-32-0618
The purpose of this study is to explore an effect of cooled-EGR on the diesel engine performance fueled with coconut-oil methyl ester (CME). The exhaust gas was cooled by the water at room temperature and was fed to the intake manifold, and the EGR rate was changed from 0 % to 30 % at every 10 %. The engine performances were measured at several EGR rates, fuel injection pressures and timings. Test fuels were CME and commercial diesel fuel. In the case of high EGR rate at which the compression ignition was deteriorated, the ignition timing of CME was always earlier than that of diesel fuel, therefore CME had good ignitability as compared with diesel fuel under EGR application. When the fuel injection pressure was increased at high EGR rate, the ignition delay was improved by the fuel atomization and air-fuel mixing effect.
Technical Paper

The Possibility for Realization of Dual Combustion Cycle for Spark Ignition Engine

2017-11-05
2017-32-0091
The purpose of this study is to operate the spark ignition engine by the dual combustion cycle. The dual combustion cycle has two combustion processes, these are the constant volume combustion and the constant pressure combustion. The lean combustion and the direct fuel injection were applied to realize the dual combustion cycle for spark ignition engines. The combustion of lean mixture was corresponding to the constant volume combustion. The fuel was directly injected to combustion chamber and was burned with the remained oxygen after the lean combustion, so that this was corresponding to the constant pressure diffusion combustion. The combustion experiments were conducted by using the constant volume vessel. The lean propane-air mixture of which equivalence ratios were 0.6, 0.7, 0.8 and 0.9 were used and liquid n-heptane was injected by using the high-voltage electrical discharge.
Technical Paper

Study on Flame Behavior Control by the Electric Field

2015-11-17
2015-32-0738
The purpose of this study is to elucidate flame propagation behavior of homogeneous propane-air mixture under application of non-uniform electric field. A needle-shaped electrode was attached to the ceiling and a plate electrode was set at bottom of combustion chamber, so that the electric field was applied in the direction of the chamber's vertical axis. A homogeneous propane-air mixture was supplied at equivalence ratio of 1.0 and was ignited by leaser induced breakdown under atmospheric pressure and room temperature. It was found that the flame front and plate electrode were repelled each other and a thin air layer was formed between the flame and plate electrode when a relatively low positive DC non-uniform electric field was applied to the needle-shaped electrode. It might be thought that the induced current was generated in the flame front, so that the flame front and plate electrode repelled each other.
Technical Paper

Influence of Combustion Chamber Wall Temperature on Combustion in an HCCI Engine Using an Alternative Fuel

2015-11-17
2015-32-0790
Internal combustion engines today are required to achieve even higher efficiency and cleaner exhaust emissions. Currently, research interest is focused on premixed compression ignition (Homogeneous Charge Compression Ignition, HCCI) combustion. However, HCCI engines have no physical means of initiating ignition such as a spark plug or the fuel injection timing and quantity. Therefore, it is difficult to control the ignition timing. In addition, combustion occurs simultaneously at multiple sites in the combustion chamber. As a result, combustion takes place extremely rapidly especially in the high load region. That makes it difficult for the engine to operate stably at high loads. This study focused on the fuel composition as a possible means to solve these problems. The effect of using fuel blends on the HCCI operating region and combustion characteristics was investigated using a single-cylinder test engine.
Technical Paper

A Study of HCCI Combustion Assisted by a Streamer Discharge Based on Visualization of the Entire Bore Area

2014-11-11
2014-32-0001
This study investigated the effect of streamer discharge on autoignition and combustion in a Homogeneous Charge Compression Ignition (HCCI) engine. A continuous streamer discharge was generated in the center of the combustion chamber of a 2-stroke optically accessible engine that allowed visualization of the entire bore area. The experimental results showed that the flame was initiated and grew from the vicinity of the electrode under the application of a streamer discharge. Subsequently, rapid autoignition (HCCI combustion) occurred in the unburned mixture in the end zone, thus indicating that HCCI combustion was accomplished assisted by the streamer discharge. In other word, ignition timing of HCCI combustion was advanced after the streamer discharging process, and the initiation behavior of the combustion flame was made clear under that condition.
Journal Article

Visualization and Spectroscopic Measurement of Knocking Combustion Accompanied by Cylinder Pressure Oscillations in an HCCI Engine

2013-10-15
2013-32-9166
Combustion experiments were conducted with an optically accessible engine that allowed the entire bore area to be visualized for the purpose of making clear the characteristics that induce extremely rapid HCCI combustion and knocking accompanied by cylinder pressure oscillations. The HCCI combustion regime was investigated in detail by high-speed in-cylinder visualization of autoignition and combustion and emission spectroscopic measurements. The results revealed that increasing the equivalence ratio and advancing the ignition timing caused the maximum pressure rise rate and knocking intensity to increase. In moderate HCCI combustion, the autoignited flame was initially dispersed temporally and spatially in the cylinder and then gradually spread throughout the entire cylinder.
Technical Paper

An Application of Cellulosic Liquefaction Fuel for Diesel Engine - Improvement of Fuel Property by Cellulosic Liquefaction with Plastics -

2013-10-15
2013-32-9174
There are few investigations to change wood biomasses to the industrially available energy, so that a new conversion technology of biomass to liquid fuel has been established by the direct liquefaction process. However, cellulosic liquefaction fuel (for short CLF) cold not mixed with diesel fuel. In this study, the plastic was mixed with wood to improve the solubility of CLF to diesel fuel. CLF made by the direct co-liquefaction process could be stably and completely mixed with diesel fuel in any mixing ratio and CLF included 2 wt.% of oxygen. The test engine was an air-cooled, four-stroke, single cylinder, direct fuel injection diesel engine. In the engine starting condition test, the ignition timing of 5 wt.% CLF mixed diesel fuel was slightly delayed at immediately after the engine started, however the ignition timing was almost the same as diesel fuel after the engine was warmed-up.
Journal Article

The Influence of Hot Gas Jet on Combustion Enhancement for Lean Mixture in Plasma Jet Ignition

2012-10-23
2012-32-0001
This study clarified the influence of hot gas jet on combustion enhancement effect for lean mixture in the plasma jet ignition. The hot gas jet was generated by the high temperature plasma and was ejected from igniter after plasma jet finished issuing. In combustion tests, propane-air mixture at equivalence ratio of 0.6 was used and the mixture was filled in the combustion chamber at atmosphere pressure and room temperature. For generation of the hot gas jet, the standard air was filled in chamber at same conditions and the hot gas jet was visualized by schlieren method in the absence of combustion. The combustion development processes were also visualized and the combustion pressure was measured. The discharge voltage, discharge current and the plasma luminescence were also measured. The plasma luminescence disappeared within 0.05 ms for any experimental conditions. When cavity depth was deep and orifice diameter was small, the maximum plasma luminescence height was short.
Technical Paper

A Study on the Compression Ignition Characteristics of FAME for Low Compression Ratio Diesel Engine

2012-10-23
2012-32-0010
The purpose of this study is to clarify ignition characteristics and engine performance of FAME for 4-stroke diesel engine in low compression ratios. Diesel fuel and coconut oil methyl ester (CME) were selected as test fuels, because CME consisted of saturate FAMEs which were good ignition characteristics. To reduce the compression ratio, thin copperplates were inserted between cylinder head and cylinder block and the compression ratio was reduced from 20.6 that was standard to 15. The engine starting test and an ordinary engine performance test were made at 3600 min.-₁. In engine starting test, the engine was soaked at room temperature and the ignition timing of diesel fuel was remarkably delayed compared with CME. When the compression ratio was 16, for diesel fuel, the misfiring cycles were included during engine warming up. In case of 15 of compression ratio, the engine could not be started by diesel fuel; however the engine could be run by CME.
Technical Paper

Analysis of the Effects of a Higher Compression Ratio on HCCI Combustion Characteristics using In-cylinder Visualization and Spectroscopic Measurement

2012-10-23
2012-32-0078
Homogenous Charge Compression Ignition (HCCI) combustion experiments were conducted in this study using a single-cylinder test engine fitted with a sapphire observation window to facilitate visualization of the entire cylinder bore area. In addition to in-cylinder visualization of combustion, spectroscopic measurements were made of light emission and absorption in the combustion chamber to investigate autoignition behavior in detail. Engine firing experiments were conducted to visualize HCCI combustion over a wide range of compression ratios from 12:1 to 22:1. The results showed that increasing the compression ratio advanced the ignition timing and increased the maximum pressure rise rate, making it necessary to moderate combustion. It was also found that autoignition can be induced even in a mixture lean enough to cause misfiring by raising the intake air temperature so as to advance the overall combustion process.
Technical Paper

A Study of the Mechanism Producing Autoignition in an HCCI Engine Using In-Cylinder Spectroscopy and Chemical Kinetic Simulation

2012-10-23
2012-32-0079
This study examined Homogeneous Charge Compression Ignition (HCCI) combustion characteristics in detail on the basis of in-cylinder combustion visualization, spectroscopic measurements of light emission and absorption and chemical kinetic simulations. Special attention was focused on investigating and comparing the effects of the fuel octane number and residual gas on combustion characteristics. The results made clear the relationship between the production/consumption of formaldehyde (HCHO) in the HCCI autoignition process and flame development behavior in the cylinder. Additionally, it was found that both the fuel octane number and residual gas have the effect of moderating low-temperature oxidation reactions. Furthermore, it was observed that residual gas has the effect of shifting the temperature for the occurrence of the hot flame to a higher temperature range.
Journal Article

Analysis of Supercharged HCCI Combustion Using a Blended Fuel

2011-11-08
2011-32-0521
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted much interest as a combustion system that can achieve both low emissions and high efficiency. But the operating region of HCCI combustion is narrow, and it is difficult to control the auto-ignition timing. This study focused on the use of a two-component fuel blend and supercharging. The blended fuel consisted of dimethyl ether (DME), which has attracted interest as alternative fuel for compression-ignition engines, and methane, the main component of natural gas. A spectroscopic technique was used to measure the light emission of the combustion flame in the combustion chamber in order to ascertain the combustion characteristics. HCCI combustion characteristics were analyzed in detail in the present study by measuring this light emission spectrum.
Journal Article

A Study of an HCCI Engine Operating on a Blended Fuel of DME and Methane

2011-11-08
2011-32-0522
In this study, experiments were conducted using a blend of two types of fuel with different ignition characteristics. One was dimethyl ether (DME) that has a high cetane number, autoignites easily and displays low-temperature oxidation reaction mechanisms; the other was methane that has a cetane number of zero and does not autoignite easily. A mechanically driven supercharger was provided in the intake pipe to adjust the intake air pressure. Moreover, flame light in the combustion chamber was extracted using a system for observing light emission that occurred in the space between the cylinder head and the cylinder and in the bore direction of the piston crown. The results of previous studies conducted with a supercharged HCCI engine and a blended fuel of DME and methane have shown that heat release of the hot flame is divided into two stages and that combustion can be moderated by reducing the peak heat release rate (HRR).
Technical Paper

The Effects of Electric Fields on Flame Propagation of Homogeneous Hydrogen-Air Mixture

2011-11-08
2011-32-0577
The flame propagation behavior of homogeneous hydrogen-air mixture under application of high-voltage uniform or non-uniform electric field was explored by using combustion vessel. When a uniform electric field was applied, two plate electrodes were attached to ceiling and bottom of combustion chamber and, to apply a non-uniform electric field, an electrode in ceiling was needle-shaped and an electrode in bottom was plate-shaped. The positive or negative polarity DC high voltage was applied for an electrode in ceiling. When a positive polarity non-uniform electric field was applied to the mixture at any equivalence ratios and the input voltage was higher than 12 kV, the flame propagation was enhanced in the downward direction. This is because the corona wind was generated from the tip of needle-shaped electrode to grounded electrode by the brush corona.
Technical Paper

A Study on Influence of Forced Over Cooling on Diesel Engine Performance

2011-11-08
2011-32-0605
The ignitability and engine performance of FAMEs at the cold condition were experimentally investigated by using two FAMEs, i.e. coconut oil methyl ester (CME) and soybean oil methyl ester (SME). The cold start test and forced over cooling test were conducted. In the forced over cooling test, engine was forced cooled by the injecting water mist to engine cooling fin. In the cold start test, the cylinder pressure of CME rose earliest because CME has a superior ignitability. The crank angle at ignitions of diesel fuel and CME were not so affected by the forced over cooling, however ignition timing of SME was remarkably delayed. In cases of forced over cooling, COV of maximum combustion pressure of CME was lower than that of normal air cooling condition. The forced over cooling has a potential to reduce NOx emission, however HC, CO and smoke concentrations were increased in a high load due to incomplete combustion.
Technical Paper

Study on Performance of Diesel Engine Applied with Emulsified Diesel Fuel: The Influence of Fuel Injection Timing and Water Contents

2011-11-08
2011-32-0606
The application of emulsified fuel for diesel engines is expected to reduce NOx and soot simultaneously. The purpose of this study is to clarify the influence of water content in emulsified fuel and fuel injection timing on diesel engine performance. The engine performance of emulsified fuel was compared with the water injection method. In the water injection test, water was injected to intake manifold and diesel fuel was directly injected into combustion chamber. Two emulsified fuels of which mixing ratio of water and emulsifier to diesel fuel were 15 and 30 vol.% were tested. Engine performance and exhaust gas emission of water injection method were almost similar to those of diesel fuel, so that water presented in combustion chamber had almost no influence on engine performance. Therefore, it can be considered that the micro explosion of fuel droplet enhanced the fuel atomization and mixing of fuel and air.
Technical Paper

Performance of Air Motor with Regenerating System Designed for Propulsion of Bicycle

2011-11-08
2011-32-0615
An air motor with regenerating system for propulsion of a bicycle was newly developed. An air motor was driven by the compressed air and the bicycle was propelled. When the bicycle was decelerating, the air motor was acted as a compressor and the kinetic energy of bicycle was regenerated as compressed air. The purpose of this study is to elucidate the performance of air motor and driving characteristic of bicycle. The air motor in this study was the reciprocating piston type like an internal combustion engine, and cylinder arrangement was in-line two-cylinder. The output power increased with an increase of supply air pressure although the maximum cylinder pressure was less than the supply air pressure. The output power decreased as the revolution increased due to friction loss. The maximum cylinder pressure reduced as the rotational frequency increased because the inlet valve opening duration was decreased.
Journal Article

Optical Measurement of Autoignition and Combustion Behavior in an HCCI Engine

2010-09-28
2010-32-0089
In this study, optical measurements were made of the combustion chamber gas during operation of a Homogeneous Charge Compression Ignition (HCCI) engine in order to obtain a better understanding of the ignition and combustion characteristics. The principal issues of HCCI engines are to control the ignition timing and to optimize the combustion state following ignition. Autoignition in HCCI engines is strongly influenced by the complex low-temperature oxidation reaction process, alternatively referred to as the cool flame reaction or negative temperature coefficient (NTC) region. Accordingly, a good understanding of this low-temperature oxidation reaction process is indispensable to ignition timing control. In the experiments, spectroscopic measurement methods were applied to investigate the reaction behavior in the process leading to autoignition.
Technical Paper

Analysis of Knocking in an SI Engine based on In-cylinder: Spectroscopic Measurements and Visualization

2010-09-28
2010-32-0092
There are strong demands today to further improve the thermal efficiency of internal combustion engines against a backdrop of various environmental issues, including rising carbon dioxide (CO2) emissions and global warming. One factor that impedes efforts to improve the thermal efficiency of spark ignition engines is the occurrence of knocking. The aim of this study was to elucidate the details of knocking based on spectroscopic measurements and visualization of phenomena in the combustion chamber of a test engine that was operated on three primary reference fuels with different octane ratings (0 RON, 30 RON, and 50 RON). The ignition timing was retarded in the experiments to delay the progress of flame propagation, making it easier to capture the behavior of low-temperature oxidation reactions at the time knocking occurred.
Journal Article

A Study of HCCI Combustion using Spectroscopic Techniques and Chemical Kinetic Simulations

2009-11-03
2009-32-0070
This study was conducted to investigate the influence of low-temperature reactions on the Homogeneous Charge Compression Ignition (HCCI) combustion process. Specifically, an investigation was made of the effect of the residual gas condition on low-temperature reactions, autoignition and the subsequent state of combustion following ignition. Light emission and absorption spectroscopic measurements were made in the combustion chamber in order to investigate low-temperature reactions in detail. In addition, chemical kinetic simulations were performed to validate the experimental results and to analyze the elemental reaction process. The results made clear the formation behavior of the chemical species produced during low-temperature HCCI reactions.
X