Refine Your Search

Topic

Search Results

Technical Paper

Investigation of the Ignition Process of Pilot Injections Using CFD

2019-09-09
2019-24-0129
State of the art high-pressure fuel injectors offer the ability to inject multiple times per cycle, and can reach very low fuel amounts per injection event. This behaviour allows the application of pilot injections in diesel engine applications or dual fuel engines. In both diesel and dual fuel engines, the amount of pilot fuel affects the engine efficiency. The understanding of the underlying ignition mechanism of the pilot fuel is required to optimize injection parameters and the engines’ fuel consumption. The present work focuses on the differences of ignition mechanisms between long and short injections. The investigation has been performed numerically, using CFD with a well-proven combustion model. The setup used employs a well characterized single orifice injector, injecting into a high temperature, pressurized environment with a composition of 15% oxygen.
Technical Paper

Flamelet Generated Manifolds Applied to Dual-Fuel Combustion of Lean Methane/Air Mixtures at Engine Relevant Conditions Ignited by n Dodecane Micro Pilot Sprays

2019-04-02
2019-01-1163
In this study, a novel 3D-CFD combustion model employing Flamelet Generated Manifolds (FGM) for dual fuel combustion was developed. Validation of the platform was carried out using recent experimental results from an optically accessible Rapid Compression Expansion Machine (RCEM). Methane and n-dodecane were used as model fuels to remove any uncertainties in terms of fuel composition. The model used a tabulated chemistry approach employing a reaction mechanism of 130 species and 2399 reactions and was able to capture non-premixed auto ignition of the pilot fuel as well as premixed flame propagation of the background mixture. The CFD model was found to predict well all phases of the dual fuel combustion process: I) the pilot fuel ignition delay, II) the Heat Release Rate of the partially premixed conversion of the micro pilot spray with entrained methane/air and III) the sustained background mixture combustion following the consumption of the spray plume.
Technical Paper

POMDME as an Alternative Pilot Fuel for Dual-Fuel Engines: Optical Study in a RCEM and Application in an Automotive Size Dual-Fuel Diesel Engine

2018-09-10
2018-01-1734
Dual-fuel natural gas engines are seen as an attractive solution for simultaneous reduction of pollutant and CO2 emissions while maintaining high engine thermal efficiency. However, engines of this type exhibit a tradeoff between misfire as well as high UHC emissions for small pilot injection amounts and higher emissions of soot and NOX for operation strategies with higher pilot fuel proportion. The aim of this study was to investigate POMDME as an alternative pilot fuel having the potential to mitigate the emissions tradeoff, enabling smokeless combustion due to high degree of oxygenation, and being less prone to misfire due to its higher cetane number. Furthermore, POMDME can be synthetized carbon neutrally. First, characteristics of POMDME ignition in methane/air mixture and the transition into premixed flame propagation were investigated optically in a rapid compression-expansion machine (RCEM) by employing Schlieren and OH* chemiluminescence imaging.
Journal Article

Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine

2018-04-03
2018-01-0258
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging.
Technical Paper

Numerical Investigation of Nozzle-Geometry Variations and Back-Pressure Changes on High Pressure Gas Injections under Application-Relevant Conditions

2018-04-03
2018-01-1138
In the present work numerical simulations were carried out investigating the effect of fuel type, nozzle-geometry variations and back-pressure changes on high-pressure gas injections under application-relevant conditions. Methane, hydrogen and nitrogen with a total pressure of 500 bar served as high-pressure fuels and were injected into air at rest at 200 bar and 100 bar. Different nozzle shapes were simulated and the analysis of the results lead to a recommendation for the most advantageous geometry regarding jet penetration, volumetric growth, mixing enhancement and discharge coefficient. Additionally an artificial inlet boundary conditions was tested for the use with real-gas thermodynamics and was shown to be capable of reducing the simulation time significantly.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

The Effect of Cycle-to-Cycle Variations on the NOx-SFC Tradeoff in Diesel Engines under Long Ignition Delay Conditions

2017-09-04
2017-24-0100
Cycle-to-cycle variations in internal combustion engines are known to lead to limitations in engine load and efficiency, as well as increases in emissions. Recent research has led to the identification of the source of cyclic variations of pressure, soot and NO emissions in direct injection common rail diesel engines, when employing a single block injection and operating under long ignition delay conditions. The variations in peak pressure arise from changes in the diffusion combustion rate, caused by randomly occurring in-cylinder pressure fluctuations. These fluctuations result from the excitation of the first radial mode of vibration of the cylinder gases which arises from the rapid premixed combustion after the long ignition delay period. Cycles with high-intensity fluctuations present faster diffusion combustion, resulting in higher cycle peak pressure, as well as higher measured exhaust NO concentrations.
Technical Paper

Spray Model Based Phenomenological Combustion Description and Experimental Validation for a Dual Fuel Engine

2017-09-04
2017-24-0098
The operation of dual fuel engines, operated with natural gas as main fuel, offers the potential of substantial savings in CO2. Nevertheless, the operating map area where low pollutant emissions are produced is very narrow. Especially at low load, the raw exhaust gas contains high concentrations of unburned methane and, with high pilot fuel portions due to ignition limitations, also soot. The analysis of the combustion in those conditions in particular is not trivial, since multiple combustion modes are present concurrently. The present work focuses on the evaluation of the individual combustion modes of a dual fuel engine, operated with natural gas as main and diesel as pilot fuel, using a combustion model. The combustion has been split in two partwise concurrent combustion phases: the auto-ignition phase and the premixed flame propagation phase.
Journal Article

Development and Experimental Validation of a Fast Spray Ignition Model for Diesel Engines Using Insights from CFD Spray Calculations

2017-03-28
2017-01-0812
Modern Diesel engines have become ever more complex systems with many degrees of freedom. Simultaneously, with increasing computational power, simulations of engines have become more popular, and can be used to find the optimum set up of engine operation parameters which result in the desired point in the emission-efficiency trade off. With increasing number of engine operation parameter combinations, the number of calculations increase exponentially. Therefore, adequate models for combustion and emissions with limited calculation costs are required. For obvious reasons, the accuracy of the ignition timing is a key point for the following combustion and emission model quality. Furthermore, the combination of mixing and chemical processes during the ignition delay is very challenging to model in a fast way for a wide range of operation conditions.
Journal Article

Modeling Split Injections of ECN “Spray A” Using a Conditional Moment Closure Combustion Model with RANS and LES

2016-10-17
2016-01-2237
This study investigates n-dodecane split injections of “Spray A” from the Engine Combustion Network (ECN) using two different turbulence treatments (RANS and LES) in conjunction with a Conditional Moment Closure combustion model (CMC). The two modeling approaches are first assessed in terms of vapor spray penetration evolutions of non-reacting split injections showing a clearly superior performance of the LES compared to RANS: while the former successfully reproduces the experimental results for both first and second injection events, the slipstream effect in the wake of the first injection jet is not accurately captured by RANS leading to an over-predicted spray tip penetration of the second pulse. In a second step, two reactive operating conditions with the same ambient density were investigated, namely one at a diesel-like condition (900K, 60bar) and one at a lower temperature (750K, 50bar).
Journal Article

Comparison and Sensitivity Analysis of Turbulent Flame Speed Closures in the RANS G-Equation Context for Two Distinct Engines

2016-10-17
2016-01-2236
Three-dimensional reactive computational fluid dynamics (CFD) plays a crucial role in IC engine development tasks complementing experimental efforts by providing improved understanding of the combustion process. A widely adopted combustion model in the engine community for (partially) premixed combustion is the G-Equation where the flame front is represented by an iso-level of an arbitrary scalar G. A convective-reactive equation for this iso-surface is solved, for which the turbulent flame speed ST must be provided. In this study, the commonly used and well-established Damköhler approach is compared to a novel correlation, derived from an algebraic closure for the scalar dissipation of reaction progress as proposed by Kolla et al. [1].
Journal Article

Extension of the Phenomenological 3-Arrhenius Auto-Ignition Model for Six Surrogate Automotive Fuels

2016-04-05
2016-01-0755
An existing three-stage ignition delay model which has seen successful application to Primary Reference Fuels (PRFs) has been extended to six surrogate fuels which constitute potential candidates for future Homogeneous Charge Compression Ignition (HCCI) engines. The fuels include petroleum-derived and oxygenated components and can be divided into low, intermediate and high cetane number groups. A new methodology to obtain the model parameters is presented which relies jointly on simulation and experimental data: in a first step, constant volume adiabatic reactor simulations using chemical kinetic mechanisms are performed to generate ignition delays for a very wide range of conditions, namely variations in equivalence ratio, Exhaust Gas Recirculation (EGR), pressure and temperature.
Journal Article

Formulation of a Knock Model for Ethanol and Iso-Octane under Specific Consideration of the Thermal Boundary Layer within the End-Gas

2014-10-13
2014-01-2607
Knock is often the main limiting factor for brake efficiency in spark ignition engines and is mostly attributed to auto-ignition of the unburned mixture in front of the flame. In order to study knock in a systematic way, spark angle sweeps with ethanol and iso-octane have been carried out on single cylinder spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed fuel/air mixtures. Much earlier and stronger knock can be observed for iso-octane compared to ethanol at otherwise same engine operating conditions due to the cooling effect and higher octane number of ethanol, leading to different cycle-to-cycle variation behavior. Detailed chemical kinetic mechanisms are used to compute ignition delay times at conditions relevant to the measurements and are compared to empirical correlations available in literature. The different correlations are used in a knock model approach and are tested against the measurement data.
Journal Article

Extending the NOx Reduction Potential with Miller Valve Timing Using Pilot Fuel Injection on a Heavy-Duty Diesel Engine

2014-10-13
2014-01-2632
New emission legislations applicable in the near future to sea-going vessels, off-road and off-highway vehicles require drastic nitric oxides emission reduction. A promising approach to achieve part of this decrease is charge air temperature reduction using Miller timing. However, it has been shown in literature that the reduction potential is limited, achieving a minimum in NOx emissions at a certain end-of-compression temperature. Further temperature reduction has shown to increase NOx emissions again. Some studies have shown that this increase is correlated to an increased amount of premixed combustion. In this work, the effects of pilot injection on engine out NOx emissions for very early intake valve closure (i.e. extreme Miller), high boost pressures and cold end-of-compression in-cylinder conditions are investigated. The experiments are carried out on a 3.96L single cylinder heavy-duty common-rail Diesel engine operating at 1000 rpm and at constant global air-to-fuel ratio.
Technical Paper

Experimental Investigation on the Gas Jet Behavior for a Hollow Cone Piezoelectric Injector

2014-10-13
2014-01-2749
Direct injection of natural gas in engines is considered a promising approach toward reducing engine out emissions and fuel consumption. As a consequence, new gas injection strategies have to be developed for easing direct injection of natural gas and its mixing processes with the surrounding air. In this study, the behavior of a hollow cone gas jet generated by a piezoelectric injector was experimentally investigated by means of tracer-based planar laser-induced fluorescence (PLIF). Pressurized acetone-doped nitrogen was injected in a constant pressure and temperature measurement chamber with optical access. The jet was imaged at different timings after start of injection and its time evolution was analyzed as a function of injection pressure and needle lift.
Journal Article

Knock in an Ethanol Fueled Spark Ignition Engine: Detection Methods with Cycle-Statistical Analysis and Predictions Using Different Auto-Ignition Models

2014-04-01
2014-01-1215
Knock is studied in a single cylinder direct injection spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed ethanol-air mixtures. At different speeds and intake temperatures spark angle sweeps have been performed at non-knocking conditions and varying knock intensities. Heat release rates and two zone temperatures are computed for both the mean and single cycle data. The in-cylinder pressure traces are analyzed during knocking combustion and have led to a definition of knocking conditions both for every single cycle as well as the mean engine cycle of a single operating point. The timing for the onset of knock as a function of degree crank angle and the mass fraction burned is determined using the “knocking” heat release and the pressure oscillations typical for knocking combustion.
Journal Article

Determination of Supersonic Inlet Boundaries for Gaseous Engines Based on Detailed RANS and LES Simulations

2013-09-08
2013-24-0004
The combustion of gaseous fuels like methane in internal combustion engines is an interesting alternative to the conventional gasoline and diesel fuels. Reasons are the availability of the resource and the significant advantage in terms of CO2 emissions due to the beneficial C/H ratio. One difficulty of gaseous fuels is the preparation of the gas/air mixtures for all operation points, since the volumetric energy density of the fuel is lower compared to conventional liquid fuels. Low-pressure port-injected systems suffer from substantially reduced volumetric efficiencies. Direct injection systems avoid such losses; in order to deliver enough fuel into the cylinder, high pressures are however needed for the gas injection which forces the fuel to enter the cylinder at supersonic speed followed by a Mach disk. The detailed modeling of these physical effects is very challenging, since the fluid velocities and pressure and velocity gradients at the Mach disc are very high.
Journal Article

Simulations of Diesel Sprays Using the Conditional Moment Closure Model

2013-04-08
2013-01-1618
Numerical simulations of diesel sprays in a constant-volume vessel have been performed with the conditional moment closure (CMC) combustion model for a broad range of conditions. On the oxidizer side these include variations in ambient temperature (800-1100 K), oxygen volume fraction (15-21%) and density (7.3-58.5 kg/m₃) and on the fuel side variation in injector orifice diameter (50-363 μm) and fuel pressure (600-1900 bar); in total 22 conditions. Results are compared to experimental data by means of ignition delay and flame lift-off length (LOL). Good agreement for both quantities is reported for the vast majority of conditions without any changes to model constants: the variations relating to the air side are quantitatively accurately predicted; for the fuel side (viz. orifice diameter and injection pressure) the trends are qualitatively well reproduced.
Technical Paper

Influence of Fuel Composition and Combustion Process on Thermodynamic Parameters of SI Engines

2012-09-10
2012-01-1633
In the field of heavy-duty applications almost all engines apply the compression ignition principle, spark ignition is used only in the niche of CNG engines. The main reason for this is the high efficiency advantage of diesel engines over SI engines. Beside this drawback SI engines have some favorable properties like lower weight, simple exhaust gas aftertreatment in case of stoichiometric operation, high robustness, simple packaging and lower costs. The main objective of this fundamental research was to evaluate the limits of a SI engine for heavy-duty applications. Considering heavy-duty SI engines fuel consumption under full load conditions has a high impact on CO₂ emissions. Therefore, downsizing is not a promising approach to improve fuel consumption and consequently the focus of this work lies on the enhancement of thermal efficiency in the complete engine map, intensively considering knocking issues.
X