Refine Your Search

Author

Search Results

Technical Paper

Sulfur Impact on Methane Steam Reforming over the Stoichiometric Natural Gas Three-Way Catalyst

2024-04-09
2024-01-2633
The steam reforming of CH4 plays a crucial role in the high-temperature activity of natural gas three-way catalysts. Despite existing reports on sulfur inhibition in CH4 steam reforming, there is a limited understanding of sulfur storage and removal dynamics under various lambda conditions. In this study, we utilize a 4-Mode sulfur testing approach to elucidate the dynamics of sulfur storage and removal and their impact on three-way catalyst performance. We also investigate the influence of sulfur on CH4 steam reforming by analyzing CH4 conversions under dithering, rich, and lean reactor conditions. In the 4-Mode sulfur test, saturating the TWC with sulfur at low temperatures emerges as the primary cause of significant three-way catalyst performance degradation. After undergoing a deSOx treatment at 600 °C, NOx conversions were fully restored, while CH4 conversions did not fully recover.
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
Technical Paper

Impact of Chemical Contaminants on Stoichiometric Natural Gas Engine Three-Way Catalysts with High Mileage History

2022-03-29
2022-01-0542
Stoichiometric natural gas engines with three-way catalysts emit less NOx and CH4 due to their higher efficiency compared to lean-burn natural gas engines. Although hydrothermal aging of three-way catalysts has been extensively studied, a deeper understanding beyond hydrothermal aging is needed to explain real-world performance, especially for natural gas engines with near-zero NOx emissions. In this investigation, field-aged three-way catalysts were characterized to identify the contribution of chemical aging to their overall performance. It was found that the sulfur species on the field-aged TWCs were entirely distributed along the catalyst length, showing a decreasing trend, whereas phosphorous contamination was mainly observed at the inlet section of the three-way catalysts, and the phosphorous concentration declined sharply along the axial length.
Technical Paper

Diagnostics of Field-Aged Three-Way Catalyst (TWC) on Stoichiometric Natural Gas Engines

2019-04-02
2019-01-0998
Three-way catalysts have been used in a variety of stoichiometric natural gas engines for emission control. During real-world operation, these catalysts have experienced a large number of temporary and permanent deactivations including thermal aging and chemical contamination. Thermal aging is typically induced either by high engine-out exhaust temperatures or the reaction exotherm generated on the catalysts. Chemical contamination originates from various inorganic species such as Phosphorous (P) and Sulfur (S) that contain in engine fluids, which can poison and/or mask the catalyst active components. Such deactivations are quite difficult to simulate under laboratory conditions, due to the fact that multiple deactivation modes may occur at the same time in the real-world operations. In this work, a set of field-aged TWCs has been analyzed through detailed laboratory research in order to identify and quantify the real-world aging mechanisms.
Technical Paper

Reactor System with Diesel Injection Capability for DOC Evaluations

2018-04-03
2018-01-0647
Plug flow reactors, simulating engine exhaust gas, are widely used in emissions control research to gain insight into the reaction mechanisms and engineering aspects that controls activity, selectivity, and durability of catalyst components. The choice of relevant hydrocarbon (HC) species is one of the most challenging factor in such laboratory studies, given the variety of compositions that can be encountered in different application scenarios. Furthermore, this challenge is amplified by the experimental difficulties related to introducing heavier and multi-component HCs and analyzing the reaction products.
Technical Paper

Experimental and Kinetic Modeling of Degreened and Aged Three-way Catalysts: Aging Impact on Oxygen Storage Capacity and Catalyst Performance

2018-04-03
2018-01-0950
The aging impact on oxygen storage capacity (OSC) and catalyst performance was investigated on one degreened and one aged (hydrothermally aged at 955 °C for 50 h) commercial three-way catalyst (TWC) by experiments and modeling. The difference of OSC between the degreened and aged TWCs was dependent on catalyst temperature. The largest difference was found at 600 °C, at which the amount of OSC decreased by 45.5%. Catalyst performance was evaluated through lightoff tests at two simulated engine exhaust conditions (lean and rich) on a micro-reactor. The aging impact on the catalyst performance was different under lean and rich environments and investigated separately. At the lean condition, oxidation of CO and C3H6 was significantly suppressed while oxidation of C3H8 was relatively less degraded. At the rich condition, the inhibition effect was more pronounced on the aged TWC and inhibiting hydrocarbon species from C3H6 partial oxidation can survive at temperatures up to 450 °C.
Journal Article

Effect of Transition Metal Ion Properties on the Catalytic Functions and Sulfation Behavior of Zeolite-Based SCR Catalysts

2017-03-28
2017-01-0939
Copper- and Iron- based metal-zeolite SCR catalysts are widely used in US and European diesel aftertreatment systems to achieve drastic reduction in NOx emission. These catalysts are highly selective to N2 under wide range of operating conditions. Nevertheless, the type of transition metal has a significant impact on the key performance and durability parameters such as NOx conversion, selectivity towards N2O, hydrothermal stability, and sensitivity to fuel sulfur content. In this study, we explained the differences in the performance characteristics of these catalysts based on their relative acidic-basic nature of transition metal present in these catalysts using practically relevant gas species present in diesel exhaust such as NO2, SOx, and NH3. These experiments show that Fe-zeolite has relatively acidic nature as compared to Cu-zeolite that causes NH3 inhibition and hence explains low NOx conversion on Fe-zeolite at low temperature under standard SCR conditions.
Journal Article

The Impact of Ammonium Nitrate Species on Low Temperature NOx Conversion Over Cu/CHA SCR Catalyst

2017-03-28
2017-01-0953
Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including the unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200°C, these catalysts may not show desired levels of NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 for fast SCR. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200°C leads to ammonium nitrate formation and accumulation, resulting in the inhibition of NOx conversion. In this contribution, the formation and decomposition of NH4NO3 on a commercial Cu/CHA catalyst have been investigated systematically. First, the impact of NH4NO3 self-inhibition on SCR activity as a function of temperature and NO2/NOx ratios was investigated through reactor testing.
Journal Article

Durability Assessment of Diesel Cold Start Concept (dCSC™) Technologies

2017-03-28
2017-01-0955
The phase-in of US EPA Tier 3 and California LEV III emission standards require further reduction of tailpipe criteria pollutants from automobiles. At the same time, the mandate for reducing Green House Gas (GHG) emissions continuously lowers the exhaust temperature. Both regulations pose significant challenges to emission control catalyst technologies, especially for cold start emissions. The recently developed diesel cold start concept technology (dCSC™) shows promising results. It stores NOx and HC during the cold start period until the downstream catalytic components reach their operating temperatures, when the stored NOx/HC are subsequently released and converted. The technology also has oxidation functions built in and acts as a diesel oxidation catalyst under normal operating conditions. In a US DOE funded project, the diesel cold start concept technology enabled a high fuel efficiency vehicle to achieve emissions targets well below the SULEV30 emission standards.
Technical Paper

Catalyst Sulfur Poisoning and Recovery Behaviors: Key for Designing Advanced Emission Control Systems

2017-01-10
2017-26-0133
Advanced emission control systems for diesel engines usually include a combination of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and Ammonia Slip Catalyst (ASC). The performance of these catalysts individually, and of the aftertreatment system overall, is negatively affected by the presence of oxides of sulfur, originating from fuel and lubricant. In this paper, we illustrated some key aspects of sulfur interactions with the most commonly used types of catalysts in advanced aftertreatment systems. In particular, DOC can oxidize SO2 to SO3, collectively referred to as SOx, and store these sulfur containing species. The key functions of a DOC, such as the ability to oxidize NO and HC, are degraded upon SOx poisoning. The impact of sulfur poisoning on the catalytic functions of a DPF is qualitatively similar to DOC.
Journal Article

Impact of Carbonaceous Compounds Present in Real-World Diesel Exhaust on NOx Conversion over Vanadia-SCR Catalyst

2016-04-05
2016-01-0921
Exposure of hydrocarbons (HCs) and particulate matter (PM) under certain real-world operating conditions leads to carbonaceous deposit formation on V-SCR catalysts and causes reversible degradation of its NOx conversion. In addition, uncontrolled oxidation of such carbonaceous deposits can also cause the exotherm that can irreversibly degrade V-SCR catalyst performance. Therefore carbonaceous deposit mitigation strategies, based on their characterization, are needed to minimize their impact on performance. The nature and the amount of the deposits, formed upon exposure to real-world conditions, were primarily carried out by the controlled oxidation of the deposits to classify these carbonaceous deposits into three major classes of species: i) HCs, ii) coke, and iii) soot. The reversible NOx conversion degradation can be largely correlated to coke, a major constituent of the deposit, and to soot which causes face-plugging that leads to decreased catalyst accessibility.
Journal Article

Impact of Rh Oxidation State on NOx Reduction Performance of Multi-Component Lean NOx Trap (LNT) Catalyst

2016-04-05
2016-01-0947
Typical Lean NOx Trap (LNT) catalyst composition includes precious metal components (Pt, Pd, and/or Rh), responsible for NO oxidation during lean operation and NOx reduction during rich operation. It was found that redox history of commercial LNT catalyst plays a significant role on deciding its NOx conversion under Lean/Rich cyclic condition. Further test had shown that fully formulated LNT catalyst being pre-reduced had shown much better NO reduction activity during the temperature-programmed reduction (TPRx) of NO than the same LNT catalyst being oxidized. The following study with Rh-only and Pt-only catalyst had demonstrated that Rh plays a key role on the large variation of the NO reduction function due to oxidation state change over LNT catalyst.
Journal Article

Impact of Accelerated Hydrothermal Aging on Structure and Performance of Cu-SSZ-13 SCR Catalysts

2015-04-14
2015-01-1022
In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
Technical Paper

SCR Architectures for Low N2O Emissions

2015-04-14
2015-01-1030
The high global warming potential of nitrous oxide (N2O) led to its inclusion in the list of regulated greenhouse gas (GHG) pollutants [1, 2]. The mitigation of N2O on aftertreatment catalysts was shown to be ineffective as its formation and decomposition temperatures do not overlap. Therefore, the root causes for N2O formation were investigated to enable the catalyst architectures and controls development for minimizing its formation. In a typical heavy-duty diesel exhaust aftertreatment system based on selective catalytic reduction of NOx by ammonia derived from urea (SCR), the main contributors to tailpipe N2O are expected to be the undesired reaction between NOx and NH3 over SCR catalyst and NH3 slip in to ammonia slip catalyst (ASC), part of which gets oxidized to N2O.
Journal Article

Gasoline Cold Start Concept (gCSC™) Technology for Low Temperature Emission Control

2014-04-01
2014-01-1509
Stricter emission standards in the near future require not only a high conversion efficiency of the toxic air pollutants but also a substantial reduction of the greenhouse gases from automotive exhaust. Advanced engines with improved fuel efficiency can reduce the greenhouse gas emissions; their exhaust temperature is, however, also low. This consequently poses significant challenges to the emission control system demanding the catalysts to function at low temperatures both during the cold start period and under the normal engine operation conditions. In this paper, we will introduce a gasoline Cold Start Concept (gCSC™) technology developed for advanced stoichiometric-burn gasoline engines to meet future stringent emission regulations. To improve the low temperature performance of three-way catalysts, a novel Al2O3/CeO2/ZrO2 mixed oxide was developed.
Technical Paper

New Insights into the Unique Operation of Small Pore Cu-Zeolite SCR Catalyst: Overlapping NH3 Desorption and Oxidation Characteristics for Minimizing Undesired Products

2014-04-01
2014-01-1542
An operational challenge associated with SCR catalysts is the NH3 slip control, particularly for commercial small pore Cu-zeolite formulations as a consequence of their significant ammonia storage capacity. The desorption of NH3 during increasing temperature transients is one example of this challenge. Ammonia slipping from SCR catalyst typically passes through a platinum based ammonia oxidation catalyst (AMOx), leading to the formation of the undesired byproducts NOx and N2O. We have discovered a distinctive characteristic, an overlapping NH3 desorption and oxidation, in a state-of-the-art Cu-zeolite SCR catalyst that can minimize NH3 slip during temperature transients encountered in real-world operation of a vehicle.
Technical Paper

Impact of Sulfur-Oxides on the Ammonia Slip Catalyst Performance

2014-04-01
2014-01-1545
The ammonia slip catalyst (ASC), typically composed of Pt oxidation catalyst overlaid with SCR catalyst, is employed for the mitigation of NH3 slip originating from SCR catalysts. Oxidation and SCR functionalities in an ASC can degrade through two key mechanisms i) irreversible degradation due to thermal aging and ii) reversible degradation caused by sulfur-oxides. The impact of thermal aging is well understood and it mainly degrades the SCR function of the ASC and increases the NH3 conversion to undesired products [1]. This paper describes the impact of sulfur-oxides on critical functions of ASC and on NH3 oxidation activity and selectivity towards N2, NOx and N2O. Furthermore impact of desulfation under selected conditions and its extent of ASC performance recovery is explained.
Journal Article

Hydrocarbon Storage on Small-Pore Cu-Zeolite SCR Catalyst

2013-04-08
2013-01-0508
In this study we investigated the interaction of short- and long-chain hydrocarbons (HCs), represented by propene (C₃H₆) and n-dodecane (n-C₁₂H₂₆), respectively, with a state-of-the-art small-pore Cu-Zeolite SCR catalyst. By varying HC adsorption conditions, we determined that physisorption was the primary mechanism for some minor HC storage at low temperatures (≺ 200°C), while chemical transformation was involved in more substantial HC storage at higher temperatures (200-400°C). The latter was evidenced by the oxygen-dependent and thermally activated nature of the storage process, and further confirmed by the carbon-rich composition of the deposits. The nature of HC-derived deposits of different origins and amounts was further probed using the standard SCR reaction at kinetically challenging conditions (at 200°C), as well by ammonia adsorption/desorption experiments.
Journal Article

Cold Start Concept (CSC™): A Novel Catalyst for Cold Start Emission Control

2013-04-08
2013-01-0535
Catalytic emission control systems are installed on nearly all automobiles and heavy-duty trucks produced today to reduce exhaust emissions for the vehicles to meet government regulations. Current systems can achieve very high efficiencies in reducing tailpipe emissions once the catalytic components reach their operating temperatures. They are, however, relatively ineffective at temperatures below their operating temperature windows, especially during the cold start period of the vehicles. With the increasingly stringent government regulations, reducing the emissions during the cold start period before the catalytic components reach their operating temperatures is becoming a major challenge. For cold start HC control, HC traps based on zeolites have been investigated and commercialized for certain applications. For cold start NOx control, especially in lean burn engine exhaust, NOx storage and release catalysts have been evaluated.
Journal Article

Mitigation of Platinum Poisoning of Cu-Zeolite SCR Catalysts

2013-04-08
2013-01-1065
A typical diesel exhaust emission control system for meeting the US EPA 2010 regulations includes one or more platinum-group metal (PGM)-containing catalysts, located upstream of an SCR unit. However, as was previously reported in literature, under certain operating conditions PGM elements can get transferred onto the downstream SCR catalyst, resulting in the loss of its NOx conversion efficiency. In the same studies, the effect of Pt poisoning was found to be mitigated by catalyst treatment at 850°C, presumably due to Pt volatilization and migration. In the present study, we have explored the process of Pt poisoning mitigation, and identified that the recovery can take place at lower temperatures, reducing the risk of hydrothermal damage to the catalyst.
X