Refine Your Search

Topic

Search Results

Technical Paper

Analysis of the Correlation between Flow and Combustion Characteristics in Spark-Ignited Engine

2021-04-06
2021-01-0463
As global emission standards are becoming more stringent, it is necessary to increase thermal efficiency through the high compression ratio in spark-ignited engines. Various studies are being conducted to mitigate knocking caused by an increased compression ratio, which requires an understanding of the combustion phenomena inside the combustion chamber. In particular, the in-cylinder flow is a major factor affecting the entire combustion process from the generation to the propagation of flames. In the field of spark-ignited engine research, where interest in the concept of lean combustion and the expansion of the EGR supply is increasing, flow analysis is essential to ensure a rapid flame propagation speed and stable combustion process. In this study, the flow around the spark plug was measured by the Laser Doppler Velocimetry system, and the correlation with combustion in spark-ignited engines was analyzed.
Technical Paper

Improvement of Knock Onset Determination Based on Supervised Deep Learning Using Data Filtering

2021-04-06
2021-01-0383
Regulations regarding vehicles’ CO2 emissions are continuing to become stricter due to global warming. The CO2 regulations urge automobile manufacturers to develop gasoline engines with improved efficiency; however, the main obstacle to the improvement is the knock phenomenon in spark-ignition engines. If knock is predicted, the efficiency potential can be maximized in an engine by applying modest spark timing. Several research regarding knock prediction modeling have been conducted, and typically Livengood-Wu integral model is used to predict the knock occurrence. For the prediction, knock onset should be determined on a given pressure signal of given knock cycles for establishing the 0D ignition delay model. Several methodologies for knock onset determination have been developed because checking all the knock onset position by hand is impossible considering the breadth of data sets.
Technical Paper

Numerical Study on Wall Impingement and Film Formation in Direct-Injection Spark-Ignition Condition

2020-04-14
2020-01-1160
Since the amount of emitted CO2 is directly related to car fuel economy, attention is being drawn to DISI (Direct-Injection Spark-Ignition) engines, which have better fuel economy than conventional gasoline engines. However, it has been a problem that the rich air-fuel mixtures associated with fuel films during cold starts due to spray impingement produce particulate matter (PM). In predicting soot formation, it is important to predict the mixture field precisely. Thus, accurate spray and film models are a prerequisite of the soot model. The previous models were well matched with low-speed collision conditions, such as those of diesel engines, which have a relatively high ambient pressure and long traveling distances. Droplets colliding at low velocities have an order of magnitude of kinetic energy similar to that of the sum of the surface tension energy and the critical energy at which the splash occurs.
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
Technical Paper

A Quasi-Dimensional Model for Prediction of In-Cylinder Turbulence and Tumble Flow in a Spark-Ignited Engine

2018-04-03
2018-01-0852
Improving fuel efficiency and emission characteristics are significant issues in engine research. Because the engine has complex systems and various operating parameters, the experimental research is limited by cost and time. One-dimensional (1D) simulation has attracted the attention of researchers because of its effectiveness and relatively high accuracy. In a 1D simulation, the applied model must be accurate for the reliability of the simulation results. Because in-cylinder turbulence mainly determines the combustion characteristics, and mean flow velocity affects the in-cylinder heat transfer and efficiency in a spark-ignited (SI) engine, a number of sophisticated models have been developed to predict in-cylinder turbulence and mean flow velocity. In particular, tumble is a significant factor of in-cylinder turbulence in SI engine.
Journal Article

An Experimental Study on the Effect of Stroke-to-Bore Ratio of Atkinson DISI Engines with Variable Valve Timing

2018-04-03
2018-01-1419
In this study, fundamental questions in improving thermal efficiency of spark-ignition engine were revisited, regarding two principal factors, that is, stroke-to-bore (S/B) ratio and valve timings. In our experiment, late intake valve closing (LIVC) camshaft and variable valve timing (VVT) module for valve timing control were equipped in the single-cylinder, direct-injection spark-ignition (DISI) engine with three different S/B ratios (1.00, 1.20, and 1.47). In these three setups, displacement volume and compression ratio (CR) were fixed. In addition, the tumble ratio for cylinder head was also kept the same to minimize the flow effect on the flame propagation caused by cylinder head while focusing on the sole effect of changing the S/B ratio.
Technical Paper

An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines

2018-04-03
2018-01-0213
Increasing compression ratio is essential for developing future high-efficiency engines due to the intrinsic characteristics of spark-ignited engines. However, it also causes the unfavorable, abnormal knocking phenomena which is the auto-ignition in the unburned end-gas region. To cope with regulations, many researchers have been experimenting with various methods to suppress knock occurrence. In this paper, it is shown that cooling the combustion chamber using coolants, which is one of the most practical methods, has a strong effect on knock mitigation. Furthermore, the relationship between thermal boundary and coolant temperatures is shown. In the beginning of this paper, knock metrics using an in-cylinder pressure sensor are explained for readers, even though entire research studies cannot be listed due to the innumerableness. The coolant passages for the cylinder head and the liner were separated to examine independent cooling strategies.
Technical Paper

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine

2017-03-28
2017-01-0525
The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity. In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
Technical Paper

Characteristics of Diesel Engine Noise According to EGR Rate Change during Transient Operation

2015-06-15
2015-01-2296
Diesel engine noise is classified into mechanical noise, flow dynamic noise and combustion noise. Among these, combustion noise level is higher than the others due to the high compression ratio of diesel combustion and auto ignition. The injected fuel is mixed with air in the ignition delay process, followed by simultaneous ignition of the premixed mixture. This process results in a rapid pressure rise, which is the main source of combustion noise. The amount of fuel burned during premixed combustion is mainly affected by the ignition delay. The exhaust gas recirculation (EGR) rate has an impact on ignition delay, and thus, it influences the combustion noise characteristics. Therefore, during the transient state, the combustion noise characteristics change as the EGR rate deviates from the target value. In this study, the effect of the EGR rate deviation during the transient state of the combustion noise is examined. A 1.6 liter diesel engine with a VGT was used for the experiment.
Technical Paper

Numerical Analysis of Pollutant Formation in Direct-Injection Spark-Ignition Engines by Incorporating the G-Equation with a Flamelet Library

2014-04-01
2014-01-1145
Direct-injection spark-ignition (DISI) engines are regarded as a promising technology for the reduction of fuel consumption and improvement of engine thermal efficiency. However, due to direct injection, the shortened fuel-air mixing duration leads to a spatial gradient of the equivalence ratio, and these locally rich regions cause the formation of particulate matter. In the current study, numerical investigations on pollutant formation in a DISI engine were performed using combined flamelet models for premixed and diffusion flames. The G-equation model for partially premixed combustion was improved by incorporating the laminar flamelet library. Gasoline fuel was represented as a ternary mixture of gasoline surrogate and its laminar flame speeds were obtained under a wide range of engine operating conditions.
Technical Paper

The Efficiency and Emission Characteristics of Dual Fuel Combustion Using Gasoline Direct Injection and Ethanol Port Injection in an SI Engine

2014-04-01
2014-01-1208
Ethanol, one of the most widely used biofuels, has the potential to increase the knock resistance of gasoline and decrease harmful emissions when blended with gasoline. However, due to the characteristics of ethanol, a trade-off relationship between knock tolerance and BSFC exists which is balanced by the blending ratio of gasoline and ethanol. Furthermore, in a spark-ignited engine, it is reported that the blending ratio that maximizes thermal efficiency varies based on the engine operating conditions. Therefore, an injection system that can deliver gasoline and ethanol separately is needed to fully exploit the benefit of ethanol. In this study, PFI injectors and a DI injector are used to deliver ethanol and gasoline, respectively. Using the dual fuel injection system, the compression ratio was increased from 9.5 to 13.3, and the knock mitigation characteristics at the full load condition were examined.
Technical Paper

Study on the Application of the Waste Heat Recovery System to Heavy-Duty Series Hybrid Electric Vehicles

2013-04-08
2013-01-1455
A waste heat recovery system is applied to a heavy-duty series hybrid electric vehicle. The engine in a series hybrid electric vehicle can operate at steady state for most of the time because the engine and drivetrain are decoupled, providing the waste heat recovery system with a steady state heat source. Thus, it is possible to optimize the waste heat recovery system design while maximizing the amount of useful energy converted in the system. To realize such a waste heat recovery system, the Rankine steam cycle is selected for the bottoming cycle. The heat exchanger is implemented as a quasi-1D simulation model to calculate the accurate quantity of recovered energy and to determine the working fluid state. The optimal geometric characteristics of the heat exchanger and the efficiency are considered according to the working fluid. The Rankine steam cycle model is constructed, and the output power is calculated.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
Technical Paper

Analysis of Cyclic Variation and the Effect of Fuel Stratification on Combustion Stabilityin a Port Fuel Injection (PFI) CAI Engine

2009-04-20
2009-01-0670
CAI engine is well known to be advantageous over conventional SI engines because it facilitates higher engine efficiency and lower emission (NOx and smoke). However, its limited operation range, large cyclic variation, and difficulty in heat release control are still unresolved obstacles. Previous studies showed that a high load range of the CAI engine is limited mainly by the combustion noise caused by a stiff pressure rise (knock), and that a low load range is also limited by the combustion instability caused by the high dilution of residual gas. In this study, the characteristics of each cycle were analyzed to find the cause of the cycle variation at the high load limit of CAI operation. Moreover, to improve combustion stability, we tested the in-cylinder fuel stratification by applying nonsymmetrical fuel injection to the intake port. Experiments were performed on a PFI single cylinder research engine equipped with dual CVVT and low lift (2 mm) cam shaft with NVO strategy.
Technical Paper

Laminar Flame Speed Characteristics and Combustion Simulation of Synthetic Gas Fueled SI Engine

2008-04-14
2008-01-0965
As the real-time supplying of hydrogen-rich gas becomes possible by the advances in the on-board fuel reforming technologies, utilizations of synthetic gas in IC engines are actively studied. However, due to the lack of fundamental studies on the combustion characteristics of synthetic gas, there is no precedent for the simulation of combustion process in synthetic gas fueled SI engine. In this study, the laminar flame speeds of synthetic gas and its mixture with iso-octane were calculated under extensive initial conditions of 3,575 points derived by combinations of temperature, pressure, fraction of lower heating value of synthetic gas and air-excess ratio variations.
Technical Paper

Modeling of Combustion Process of Multiple Injection in HSDI Diesel Engines using Modified Two-Dimensional Flamelet

2007-09-16
2007-24-0042
Ignition delay of the second injection of HSDI diesel engines is generally much shorter than that of the first injection because of the interaction between the radicals generated during the combustion process and the mixed gas of the second injection. Although previous Diesel combustion models could not explain this reaction, Hasse and Peters described the mass and heat transfer of the second injection and estimated the ignition delay of the second injection using two-dimensional flamelet equations. But a simulation of the two-dimensional flamelet equations requires enormous computational time. Thus, to analyze the combustion phenomena of the multiple injection mode in HSDI diesel engines effectively, the two-dimensional flamelet combustion model was modified in this study. To reduce the calculation time, two-dimensional flamelet equations were only applied near the stoichiometric region.
Technical Paper

Modeling of Unburned Hydrocarbon Oxidation in Engine Conditions using Modified One-step Reaction Model

2007-08-05
2007-01-3536
Modeling of unburned hydrocarbon oxidation in an SI engine was performed in engine condition using modified one-step oxidation model. The new one-step equation was developed by modifying the Arrhenius reaction rate coefficients of the conventional one-step model. The modified model was well matched with the results of detailed chemical reaction mechanism in terms of 90 % oxidation time of the fuel. In this modification, the effect of pressure and intermediate species in the burnt gas on the oxidation rate investigated and included in developed one-step model. The effect of pressure was also investigated and included as an additional multiplying factor in the reaction equation. To simulate the oxidation process of piston crevice hydrocarbons, a computational mesh was constructed with fine mesh density at the piston crevice region and the number of cell layers in cylinder was controlled according to the motion of piston.
Technical Paper

Premixed Combustion Modeling in an SI Engine Considering the Burned Gas Composition

2005-05-11
2005-01-2108
Conventional combustion models are suitable for predicting flame propagation for a wrinkled flamelet configuration. But they cannot predict the burned gas composition. This causes the overestimation of burned gas temperature and pressure. A modified method of combustion simulation was established to calculate the chemical composition and to investigate their ultimate fate in the burned gas region. In this work, the secondary products of combustion process, like CO and H2, were considered as well as the primary products like CO2 and H2O. A 3-dimensional CFD program was used to simulate the turbulent combustion and a zero dimensional equilibrium code was used to predict the chemical composition of burned gas. With this simple connection, more reasonable temperature and pressure approaching the real phenomena were predicted without additional time costs.
Technical Paper

Computational and Optical Investigation of Liquid Fuel Film on the Cylinder Wall of an SI Engine

2003-03-03
2003-01-1113
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this work, the fuel film formation model was developed to investigate the distribution of wall fuel film on the cylinder wall of an SI engine. By integrating the continuity, momentum, and energy equations along the direction of fuel film thickness the simulation of the fuel film formation was carried out in the test rig. Spray impingement and fuel film models were incorporated into the computational fluid dynamics code, STAR-CD to calculate fuel film thickness and distribution of fuel film on the cylinder wall. With a laser-induced fluorescence method, the two-dimensional visualization of liquid fuel films was carried out to validate the simulation results.
Technical Paper

The Effect of Liquid Fuel on the Cylinder Liner on Engine-Out Hydrocarbon Emissions in SI Engines

2001-09-24
2001-01-3489
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz cylinder liner in an SI engine test rig. In addition, comparing visualization results with the trend of hydrocarbon emissions in this engine, the effect of cylinder wall-wetting during a simulated cold start and warmed-up condition was investigated with the engine experiment. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized.
X