Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2021-04-06
CURRENT
J1634_202104
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal emission test procedure (FTP) using the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedure. Realistic alternatives should be allowed for new technology.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2017-07-12
HISTORICAL
J1634_201707
This SAE Recommended Practice establishes uniform procedures for testing Battery Electric Vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system's performance and not on subsystems apart from the vehicle. NOTE: The range and energy consumption values specified in this document are the raw, test-derived values.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2012-10-04
HISTORICAL
J1634_201210
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEV’s) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system’s performance and not on subsystems apart from the vehicle. NOTE: The range and energy consumption values specified in this document are the raw, test-derived values.
Standard

Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-in Hybrid Vehicles

2010-06-08
HISTORICAL
J1711_201006
This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
Standard

Vehicle Acceleration Measurement

2006-07-31
CURRENT
J1491_200607
To define a test procedure that will provide a repeatable measure of a vehicle's launch response and maximum accelleration performance.
Standard

SAE Cold Start and Driveability Procedure

2002-10-25
CURRENT
J1635_200210
To subjectively evaluate engine starting behavior and driveability characteristics of a motor vehicle which has been soaked at ambient temperature for a given time period after attaining a stabilized engine coolant temperature. This SAE Recommended Practice also defines driveability defects and the rating system. This evaluation may be affected by ambient temperature, altitude, fuel, and the road system. The vehicle should be evaluated with all fuels recommended by the manufacturer. A partial list comprises reformulated gasoline, ethanol/gasoline and methanol/gasoline blends of various proportions, diesel #1, and diesel #2.
Standard

Fuel Economy Measurement--Road Test Procedure--Cold Start and Warm-Up Fuel Economy

2002-10-25
CURRENT
J1256_200210
This procedure is a modification of the urban driving cycles noted in SAE J1082 and which is run on a suitable road or test track. The procedure yields cold start/warm-up fuel economy values indicative of consumer level at the ambient condition of the test. Within referenced limitations, the procedure can be utilized to determine the fuel economy differential among vehicles or between vehicle changes. Purpose This SAE Recommended Practice provides a uniform test procedure for measuring the fuel economy of light-duty vehicles during cold start and warm-up operation (motor vehicles designed primarily for transportation of persons or property and rated at 4500 kg GVW (10 000 lb) or less) on suitable roads.
Standard

Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure

2002-10-25
CURRENT
J1666_200210
This SAE Recommended Practice establishes uniform procedures for testing electric battery-powered vehicles which are capable of being operated on public and private roads. It is the intent of this document to provide standard tests which will allow various performance characteristics of electric vehicles to be cross-compared on a common basis in specifications, technical papers, and engineering discussions. The tests concern attributes of the total vehicle system rather than those of its subsystems and components. Tests of components such as batteries are the subject of separate procedures. The road tests specified in this document are recommended for use whenever possible particularly to establish vehicle performance specifications. The dynamometer procedures are included primarily to facilitate development testing. Section 3 provides definitions of terminology used in this document.
Standard

Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure

1999-08-01
HISTORICAL
J1666_199908
This SAE Recommended Practice establishes uniform procedures for testing electric battery-powered vehicles which are capable of being operated on public and private roads. It is the intent of this document to provide standard tests which will allow various performance characteristics of electric vehicles to be cross-compared on a common basis in specifications, technical papers, and engineering discussions. The tests concern attributes of the total vehicle system rather than those of its subsystems and components. Tests of components such as batteries are the subject of separate procedures. The road tests specified in this document are recommended for use whenever possible particularly to establish vehicle performance specifications. The dynamometer procedures are included primarily to facilitate development testing. Section 3 provides definitions of terminology used in this document.
Standard

Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles

1999-03-01
HISTORICAL
J1711_199903
This SAE Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEV's driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
Standard

ELECTRIC VEHICLE ACCELERATION, GRADEABILITY, AND DECELERATION TEST PROCEDURE

1993-05-01
HISTORICAL
J1666_199305
This SAE Recommended Practice establishes uniform procedures for testing electric battery-powered vehicles which are capable of being operated on public and private roads. It is the intent of this document to provide standard tests which will allow various performance characteristics of electric vehicles to be cross-compared on a common basis in specifications, technical papers, and engineering discussions. The tests concern attributes of the total vehicle system rather than those of its subsystems and components. Tests of components such as batteries are the subject of separate procedures. The road tests specified in this document are recommended for use whenever possible particularly to establish vehicle performance specifications. The dynamometer procedures are included primarily to facilitate development testing. Paragraph 2.2 provides definitions of terminology used in this document.
Standard

ELECTRIC VEHICLE ENERGY CONSUMPTION AND RANGE TEST PROCEDURE

1993-05-01
HISTORICAL
J1634_199305
This SAE Recommended Practice establishes uniform procedures for testing electric battery-powered vehicles which are capable of being operated on public and private roads, and is to replace the range and vehicle energy economy sections SAE J227a. The procedure addresses electric vehicles (EVs) only. It is the intent of this practice to provide standard tests which will allow for determination of energy consumption and range based on the Federal Emission Test Procedure (FTP) and the Highway Fuel Economy Test Procedure (HWFET). Realistic alternatives should be allowed for new technology. Performance is judged on the total vehicle system and the battery. Dynamometer test procedures are specified in this document in order to minimize the test-to-test variations inherent with track testing and to adhere to standard industry practice for energy consumption and range testing. Section 2 provides definitions of terminology used in this document.
Standard

FUEL ECONOMY MEASUREMENT - ROAD TEST PROCEDURE - COLD START AND WARM-UP FUEL ECONOMY

1988-10-01
HISTORICAL
J1256_198810
This procedure is a modification of the urban driving cycles noted in SAE J1082 and which is run on a suitable road or test track. The procedure yields cold start/warm-up fuel economy values indicative of consumer level at the ambient condition of the test. Within referenced limitations, the procedure can be utilized to determine the fuel economy differential among vehicles or between vehicle changes.
Standard

FUEL ECONOMY MEASUREMENT-ROAD TEST PROCEDURE—COLD START AND WARM-UP FUEL ECONOMY

1980-06-01
HISTORICAL
J1256_198006
This procedure incorporates a modified driving cycle replicate of consumer operation as contained and shown in SAE J1082b (January, 1979) and which is run on a suitable road or test track. The procedure yields cold start and warm-up fuel economy values indicative of consumer level at the ambient condition of the test. Within referenced limitations, the procedure can be utilized to determine the fuel economy differential among vehicles or between vehicle changes.
X