Refine Your Search

Topic

Search Results

Technical Paper

A discussion on fault prognosis/prediction and health monitoring techniques to improve the reliability of aerospace and automotive systems

2018-09-03
2018-36-0316
Currently, aerospace and automotive industries are developing complexand/or highly integrated systems, whose services require greater confidence to meet a set of specifications that are increasingly demanding, such as successfully operating a communications satellite, a commercial airplane, an automatic automobile, and so on. To meet these requirements and expectations, there is a growing need for fault treatment, up to predict faults and monitor the health of the components, equipment, subsystems or systems used. In the last decades, the approaches of 1) Fault Prevention, 2) Fault Detection/Tolerance and 3) Fault Detection/Correction have been widely studied and explored.
Technical Paper

Analysis of Some Semiconductors by the Handbook MIL-HDBK-217 FN2 to Improve the Reliability of Aerospace and Automotive Electronic Equipments

2017-11-07
2017-36-0217
Systems such as satellites, airplanes, cars and air traffic controls are becoming more complex and/or highly integrated. These systems integrate several technologies inside themselves, and must be able to work in very demanding environments, sometimes with few or none maintenance services due to their severe conditions of work. To survive such severe work conditions, the systems must present high levels of reliability, which are achieved through different approaches, processes, etc. These unfold in many: levels of aggregation (systems, subsystems, equipments, components, etc.), phases of their lifecycles (conception, design, manufacturing, assembly, integration, tests, operation, etc.), environments (land, sea, air, space, etc.), types of components/applications/experiences/technological communities (nuclear, aerospace, military, automotive, medical, commercial, etc.), leaded by the widespread use of semiconductors.
Technical Paper

A Discussion on Time Synchronization and their Effects in Distributed Cyber-Physical Control Systems

2016-10-25
2016-36-0293
Cyber-physical systems are joint instances of growing complexity and high integration of elements in the information and physical domains reaching high levels of difficulty to engineer an operate them. This happens with satellites, aircraft, automobiles, smart grids and others. Current technologies as computation, communication and control integrate those domains to communicate, synchronize and operate together. However, the integration of different domains brings new challenges and adds new issues, mainly in real time distributed control systems, beginning with time synchronization. In this paper, we present a discussion on time synchronization and their effects in distributed cyber-physical control systems. To do that, we review the literature, discuss some time synchronization techniques used in cyber-physical systems, and illustrate them via model and simulation of a system representative of the aerospace area.
Technical Paper

A First Strategy for Smoothing Transients in Switching Controls of Aerospace and Automotive Systems

2016-10-25
2016-36-0402
Switching controls are those that can switch between control or plant modes to perform their functions. They have the advantage of being simpler to design than an equivalent control system with a single mode. However, the transients between those modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the control or the plant. So, the smoothing of such transients is vital for their reliability and mantainability. This is can be of extreme importance in the aerospace and automotive fields, plenty of switchings between manual and autopilot modes via relays, or among gears via clutches, for example. In this work, we present a first strategy for smoothing transients in switching controls of aerospace and automotive systems.
Technical Paper

Integral of Modulus of Error Control for Smoothing Signals when Switching Modes of Aerospace and Automotive Systems

2015-09-22
2015-36-0445
Control systems that can switch between control or plant modes have the advantage of being simpler to design than an equivalent system with a single mode. However, the transition between these modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the system. This is can be of extreme importance in fields such as aerospace and automobilistic, as the switching between manual and autopilot modes or the switching of gears In this work, we will use integral criteria in original ways, to determine a coefficient on the system which should optimize the trajectory of the control signal, during the switching between two modes. Effectively, each transition will be done by a subsystem specific for it, according to the selected criterion. The simulations will be made in MATRIXx, MatLab or both, using models chosen from aerospace or automobilistic fields.
Technical Paper

A Method with Intergral Criteria to Determine Optimal Transitions between Control Modes

2014-09-30
2014-36-0368
Control systems that can switch between control modes have the advantage of being simpler to design than an equivalent system with a single mode. However, the transition between control modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the system. In this work, we will use integral criteria in an original way, to determine a coefficient on the system which should optimize the trajectory of the control signal, during the switching between two modes. Effectively, each transition will be done by a subsystem specific for it, according to the selected criterion. The simulations will be made in MATRIXx, using as models the system of control of attitude of the Multimission Platform, and a system which keeps the synchrony between two induction motors.
Technical Paper

A Discussion of the Performance Evaluation of Time Synchronization Algorithms for Networked Control Systems by Means of Model and Simulation

2014-09-30
2014-36-0382
With the growing complexity and integration of systems as satellites, automobiles, aircrafts, turbines, power controls and traffic controls, as prescribed by SAE-ARP-4754A Standard, the time de-synchronization can cause serious or even catastrophic failures. Time synchronization is a very important aspect to achieve high performance, reliability and determinism in networked control systems. Such systems operate in a real time distributed environment which frequently requires a consistent time view among different devices, levels and granularities. So, to guarantee high performance, reliability and determinism it is required a performance evaluation of time synchronization of the overall system. This time synchronization performance evaluation can be done in different ways, as experiments and/or model and simulation.
Technical Paper

Refinements of the Kalman Estimates for the Position and Velocity of a Vehicle Obtained with GPS Using Inertial Navigation System's Measurements: A Comparative Analysis

2013-10-07
2013-36-0650
Currently, the use of Global Navigation Satellite Systems-GNSS has been widely disseminated for the most different applications, from the aeronautical navigation to the car traffic, being the Global Positioning System-GPS the most used system for such objectives. New applications have presented challenges in terms of the main requirements associated to such systems, namely: precision, reliability, availability, continuity and integrity. It is because proposed solutions, such as satellite or ground-based augmentation systems, depend on signals provided by the GNSS satellite constellation. It constitutes a limitation for using such systems for position and velocity estimations. On other hand, Inertial Navigation Systems-INS, being independent of external signals, have a big potential to be applied on these circumstances; furthermore, they present characteristics that may be considered complementary to the GNSS.
Technical Paper

Reconfiguration of Control Systems as Means for Reaching Fault Tolerance: An Assessing Study on Methods Available

2013-10-07
2013-36-0639
The realization of modern systems subjected to automatic control, such as aircraft, automobiles, satellites, rocket launchers, cargo and military ships, and so forth; increasingly assume, within its very set of requirements, the task of providing better dependability, i.e.: safety, reliability, and availability altogether. Towards this demand, fault-tolerant control greatly meets such growing demand of dependability, by its ability of recognizing the occurrence of potentially hazardous/hazardous faults within the overall (closed-loop) system, and by taking remedial action whenever necessary/mandatory. The process of fault tolerance can be segregated into two fundamental steps: (1) that of fault diagnosis, comprising fault detection-isolation-identification, and, (2) control adjustment/reconfiguration. This paper focuses on the second step, of control adjustment/reconfiguration.
Technical Paper

Application of Methods to Smooth the Transition Between Control Submodes in the Nominal Mode of the Multimission Platform

2012-10-02
2012-36-0378
The Multimission Platform (MMP) is a generic service module currently in Project at INPE. In the 2001 version, its control system can be switched between nine main Operation Modes and other submodes, according to information from satellite sensors and ground commands. The Nominal Mode stabilizes the MMP in three axes and takes it to a nominal attitude, using three reaction wheels. Each wheel has coarse and fine acquisition submodes. The use of multiple modes of control for specific situations frequently is simpler than projecting a single controller for all cases. However, besides being harder to warrant its general stability, the mere switching between these submodes generates bumps, which can reduce the performance and even damage the actuator or plant. In this work, we present an application of diverse methods to smooth the transition between control submodes of the Nominal Mode of the MMP.
Technical Paper

A Scheduler with a Dynamic Priority and its Influence on a Control System

2012-10-02
2012-36-0367
In critical real-time computer systems, whether aircraft, automotive and industrial products it is very common the use of a fixed priority scheduler. The fixed priority scheduler has shown a good performance in control applications even in different applications where it was adopted. But nowadays, to go forward with the technology, be it in hardware and software, schedulers with dynamic priority can be a better alternative in certain situations. The present work aims to show that a variable priority scheduler can improve the performance of a control system obtained with a fixed priority scheduler, even when it was bad conditioned. This study is based on a four motor position control system. For this, the study will make use of a specialized simulation tool. In the future, we intend to extend this study to schedulers that use random and sporadic tasks.
Technical Paper

An Investigation on Techniques for Accurate Phase or Time Synchronization in Reconfigurable Control Systems

2012-10-02
2012-36-0398
Current systems such as: satellites, aircrafts, automobiles, turbines, power controls and traffic controls are becoming increasingly complex and/or highly integrated as prescribed by the SAE-ARP-4754 Standard. Such systems and their control systems use many modes of operation and many forms of redundancy to achieve high levels of performance and high levels of reliability under changing environments and phases of their lifecycle. The environment disturbances, environment variability, plant non-linear dynamics, plant wear, plant faults, or the non-symmetric plant operation may cause de-synchronization in phase or time among: 1) simultaneous units in the same normal mode of operation; 2) successive units in successive normal modes of operation; 3) main and spare units from normal to faulty modes of operation. So, techniques to reduce those causes or their effects are becoming important aspects to consider in the design of such systems.
Technical Paper

A Discussion on Methods Used in the Verification and Validation of Control Systems Architectures of Cyber-Physical Systems Based on Models and Systems Metrics

2012-10-02
2012-36-0458
The architecture is a concept very broad and important that is directly connected to the realization of a system. It defines what the system is capable of doing, how it accomplishes its mission and how the system is. Currently, the development of system architectures is considered a domain of knowledge where science meets art. In some specific areas, the methods on the development of system architectures are already well formalized. However, when analyzing the evaluation of system architectures such as those for multi-domain control systems, it is clear that there is still much room for rationalization. In these cases, the search for new methods for the evaluation of system architectures is currently in the state of art. In this work we discuss methods used in the verification and validation of control systems architectures of cyber-physical systems based on models and systems metrics.
Technical Paper

A Discussion on the Causes and Effects of Thermal Avalanche in Artificial Satellite Battery Charging and Discharging Systems

2012-10-02
2012-36-0558
The supply of electrical power is one of the most important functions required by the diverse payloads of satellites. A fault in the corresponding subsystem might lead to mission or even vehicle loss. Among the causes of such faults, we highlight the phenomenon of thermal avalanche in batteries. It can be explained as an energetic unbalance where the rate of heat generated in the interior of the system exceeds its capacity to dissipate it. This occurred to the OAO1 of NASA just after its launch on April 8, 1966; and with the CBERS2 of CAST and INPE already in orbit in 2007 and 2009. This work presents a discussion on the causes and effects of thermal avalanches in artificial satellite battery charging and discharging systems.
Technical Paper

Refinements of the GPS Kalman Estimates for the Position and Velocity of a Vehicle during High Acceleration Transients Using IMU Measurements

2012-10-02
2012-36-0513
Currently, the use of Global Navigation Satellite Systems-GNSS has been widely disseminated for the most different applications, from the aeronautical navigation to the car traffic system, being the Global Positioning System-GPS the most used system for such objectives. New applications of such systems have presented more demanding requirements in terms of precision for the position and velocity provided by these systems. Some solutions, as the precision augmentation systems based on satellite or ground improve the precision of the position and velocity estimates. However, the sampling rate of these systems is not substantially improved. Therefore, it constitutes a major limitation of such systems for the position and velocity estimates during high acceleration transients. On other hand, Inertial Navigation Systems- INSs present superior performance under these circumstances.
Technical Paper

Bump Reduction for the Reconfigurable Control Architecture of the MultiMission Platform

2011-10-04
2011-36-0187
Many control systems switch between control modes according to necessity. That is often simpler than designing a full control to all situations. However, this creates new problems, as determining the composed system stability and the transient during switching. The latter, while temporary, may introduce overshooting that degrade performance and damage the plant. This is particularly true for the MultiMission Platform (MMP), a generic service module currently under design at INPE. Its control system can be switched among nine main Modes of Operation and other submodes, according to ground command or information coming from the control system, mainly alarms. It can acquire one and three axis stabilization in generic attitudes, with actuators including magnetotorquers, thrusters and reaction wheels.
Technical Paper

The Use of PLL Techniques for Accurate Time or Phase Synchronization in Aerospace and Automotive Systems

2011-10-04
2011-36-0179
Current systems such as satellites, aircrafts, automobiles, turbines, wind power generators and traffic controls are becoming increasingly complex and/or highly integrated as prescribed by the SAE-ARP-4754 Standard. Such systems frequently require accurate generation, distribution and time or phase synchronization of signals with different frequencies that may be based on one reference signal and frequency. But the environment fluctuations or the non-linear dynamics of these operations cause uncertainties (skew and jitter) in the phase or time of the reference signal and its derived signals. So, techniques to reduce those causes or their effects are becoming important aspects to consider in the design of such systems. The PLL techniques are useful for establishing coherent phase or time references, jitter reduction, skew suppression, frequency synthesis, and clock recovery in numerous systems such as communication, wireless systems, digital circuits, rotors, and others.
Technical Paper

A Discussion on Fault Detection, Isolation, Identification and Reconfiguration in Networked Control Systems of Aerospace Vehicles

2011-10-04
2011-36-0088
In this work, the problem of fault detection, isolation, and reconfiguration (FDIR) for Networked-Control Systems (NCS) of aerospace vehicles is discussed. The concept of fault-tolerance is introduced from a generic structure, and a review on quantitative and qualitative methods (state estimation, parameter estimation, parity space, statistic testing, neural networks, etc.) for FDIR is then performed. Afterwards, the use of networks as loop-closing elements is introduced, followed by a discussion on advantages (flexibility, energy demand, etc.) and challenges (networks effects on performance, closed-loop fault-effects on safety, etc.) represented thereby. Finally, examples of applications on aerospace vehicles illustrate the importance of the discussion herein exposed.
Technical Paper

A Worst Case Formula for a Communication and Computation Delay in NCS.

2010-10-06
2010-36-0358
A major trend in modern aerospace and automotive systems is to integrate computing, communication and control into different levels of the vehicle and/or its supervision. A well-fitted architecture adopted by this trend is the common bus network architecture. A Networked Control System (NCS) is called when the control loop is closed through a communication network. The presence of this communication network introduces new characteristics that must be considered at the design time of a control system. This work, still in development, focuses on a worst case formula for a communication (TDMA) plus computation (RMS) on a NCS. This formula, in a first instance, agrees with the simulated cases under the hypotheses and conditions when the NCS is composed by 1 actuator - 1 sensor and when is composed by 2 actuators - 2 sensors. In the future, we intend to generalize this formula and extend this study to NCS that uses other communication protocols or others computer schedulers.
Technical Paper

Study on a Fault-Tolerant System Applied to an Aerospace Control System

2010-10-06
2010-36-0330
On several engineering applications high Reliability is one of the most wanted features. The aspects of Reliability play a key role in design projects of aircraft, spacecraft, automotive, medical, bank systems, and so, avoiding loss of life, property, or costly recalls. The highly reliable systems are designed to work continuously, even upon external threats and internal Failures. Very convenient is the fact that the term 'Failure' may have its meaning tailored to the context of interesting, as its general definition refers to it as "any deviation from the specified behavior of a system". The above-mentioned 'deviation' may refer to: performance degradation, operational misbehavior, deviation of environmental qualification levels, Safety hazards, etc. Nevertheless, Reliability is not the only requirement for a modern system. Other features as Availability, Integrity, Security and Safety are always part of the same technical specification, in a same level of importance.
X