Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computationally Efficient Progress Variable Approach for In-Cylinder Combustion and Emissions Simulations

2019-09-09
2019-24-0011
The use of complex reaction schemes is accompanied by high computational cost in 3D CFD simulations but is particularly important to predict pollutant emissions in internal combustion engine simulations. One solution to tackle this problem is to solve the chemistry prior the CFD run and store the chemistry information in look-up tables. The approach presented combines pre-tabulated progress variable-based source terms for auto-ignition as well as soot and NOx source terms for emission predictions. The method is coupled to the 3D CFD code CONVERGE v2.4 via user-coding and tested over various speed and load passenger-car Diesel engine conditions. This work includes the comparison between the combustion progress variable (CPV) model and the online chemistry solver in CONVERGE 2.4. Both models are compared by means of combustion and emission parameters. A detailed n-decane/α-methyl-naphthalene mechanism, comprising 189 species, is used for both online and tabulated chemistry simulations.
Technical Paper

Multi-Objective Optimization of Fuel Consumption and NOx Emissions with Reliability Analysis Using a Stochastic Reactor Model

2019-04-02
2019-01-1173
The introduction of a physics-based zero-dimensional stochastic reactor model combined with tabulated chemistry enables the simulation-supported development of future compression-ignited engines. The stochastic reactor model mimics mixture and temperature inhomogeneities induced by turbulence, direct injection and heat transfer. Thus, it is possible to improve the prediction of NOx emissions compared to common mean-value models. To reduce the number of designs to be evaluated during the simulation-based multi-objective optimization, genetic algorithms are proven to be an effective tool. Based on an initial set of designs, the algorithm aims to evolve the designs to find the best parameters for the given constraints and objectives. The extension by response surface models improves the prediction of the best possible Pareto Front, while the time of optimization is kept low.
Technical Paper

Influence of Nozzle Eccentricity on Spray Structures in Marine Diesel Sprays

2017-09-04
2017-24-0031
Large two-stroke marine Diesel engines have special injector geometries, which differ substantially from the configurations used in most other Diesel engine applications. One of the major differences is that injector orifices are distributed in a highly non-symmetric fashion affecting the spray characteristics. Earlier investigations demonstrated the dependency of the spray morphology on the location of the spray orifice and therefore on the resulting flow conditions at the nozzle tip. Thus, spray structure is directly influenced by the flow formation within the orifice. Following recent Large Eddy Simulation resolved spray primary breakup studies, the present paper focuses on spray secondary breakup modelling of asymmetric spray structures in Euler-Lagrangian framework based on previously obtained droplet distributions of primary breakup.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model

2017-03-28
2017-01-0512
A novel 0-D Probability Density Function (PDF) based approach for the modelling of Diesel combustion using tabulated chemistry is presented. The Direct Injection Stochastic Reactor Model (DI-SRM) by Pasternak et al. has been extended with a progress variable based framework allowing the use of a pre-calculated auto-ignition table. Auto-ignition is tabulated through adiabatic constant pressure reactor calculations. The tabulated chemistry based implementation has been assessed against the previously presented DI-SRM version by Pasternak et al. where chemical reactions are solved online. The chemical mechanism used in this work for both, online chemistry run and table generation, is an extended version of the scheme presented by Nawdial et al. The main fuel species are n-decane, α-methylnaphthalene and methyl-decanoate giving a size of 463 species and 7600 reactions.
Technical Paper

Simulation of a Three-Way Catalyst Using Transient Single and Multi-Channel Models

2017-03-28
2017-01-0966
The three-way catalytic converter (TWC) is the most common catalyst for gasoline engine exhaust gas after treatment. The reduction of carbon monoxide (CO), nitrogen oxides (NOx) and unburned hydrocarbons (HC) is achieved via oxidation of carbon monoxide and hydrocarbons, and reduction of nitrogen oxides. These conversion effects were simulated in previous works using single-channel approaches and detailed kinetic models. In addition to the single-channel model multiple representative catalyst channels are used in this work to take heat transfer between the channels into account. Furthermore, inlet temperature distribution is considered. Each channel is split into a user given number of cells and each cell is treated like a perfectly stirred reactor (PSR). The simulation is validated against an experimental four-stroke engine setup with emission outputs fed into a TWC.
Technical Paper

Potential Levels of Soot, NOx, HC and CO for Methanol Combustion

2016-04-05
2016-01-0887
Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads.
Technical Paper

Development of Methodology for Predictive Diesel Combustion Simulation Using 0D Stochastic Reactor Model

2016-04-05
2016-01-0566
Stringent exhaust emission limits and new vehicle test cycles require sophisticated operating strategies for future diesel engines. Therefore, a methodology for predictive combustion simulation, focused on multiple injection operating points is proposed in this paper. The model is designated for engine performance map simulations, to improve prediction of NOx, CO and HC emissions. The combustion process is calculated using a zero dimensional direct injection stochastic reactor model based on a probability density function approach. Further, the formation of exhaust emissions is described using a detailed reaction mechanism for n-heptane, which involves 56 Species and 206 reactions. The model includes the interaction between turbulence and chemistry effects by using a variable mixing time profile. Thus, one is able to capture the effects of mixture inhomogeneities on NOx, CO and HC emission formation.
Technical Paper

Combustion Modeling of Diesel Sprays

2016-04-05
2016-01-0592
Several models for ignition, combustion and emission formation under diesel engine conditions for multi-dimensional computational fluid dynamics have been proposed in the past. It has been recognized that the use of a reasonably detailed chemistry model improves the combustion and emission prediction especially under low temperature and high exhaust gas recirculation conditions. The coupling of the combustion chemistry and the turbulent flow can be achieved with different assumptions. In this paper we investigate a selection of n-heptane spray experiments published by the Engine Combustion Network (ECN spray H) with three different combustion models: well-stirred reactor model, transient interactive flamelet model and progress variable based conditional moment closure. All models cater for the use of detailed chemistry, while the turbulence-chemistry interaction modeling and the ability to consider local effects differ.
Technical Paper

Soot Source Term Tabulation Strategy for Diesel Engine Simulations with SRM

2015-09-06
2015-24-2400
In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work.
Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

On the Performance of Biodiesel Blends - Experimental Data and Simulations Using a Stochastic Fuel Test Bench

2014-04-01
2014-01-1115
In this work are presented experimental and simulated data from a one-cylinder direct injected Diesel engine fuelled with Diesel, two different biodiesel blends and pure biodiesel at one engine operating point. The modeling approach focuses on testing and rating biodiesel surrogate fuel blends by means of combustion and emission behavior. Detailed kinetic mechanisms are adopted to evaluate the fuel-blends performances under both reactor and diesel engine conditions. In the first part of the paper, the experimental engine setup is presented. Thereafter the choice of the surrogate fuel blends, consisting of n-decane, α-methyl-naphtalene and methyl-decanoate, are verified by the help of experiments from the literature. The direct injection stochastic reactor model (DI-SRM) is employed to simulate combustion and engine exhaust emissions (NOx, HC, CO and CO2), which are compared to the experimental data.
Technical Paper

Gasoline PPC: A Parametric Study of Late Cycle Mixing Conditions using a Predictive Two-zone SRM Modeling Tool

2013-10-14
2013-01-2621
The relatively new combustion concept known as partially premixed combustion (PPC) has high efficiency and low emissions. However, there are still challenges when it comes to fully understanding and implementing PPC. Thus a predictive combustion tool was used to gain further insight into the combustion process in late cycle mixing. The modeling tool is a stochastic reactor model (SRM) based on probability density functions (PDF). The model requires less computational time than a similar study using computational fluid dynamics (CFD). A novel approach with a two-zone SRM was used to capture the behavior of the partially premixed or stratified zones prior to ignition. This study focuses on PPC mixing conditions and the use of an efficient analysis approach.
Technical Paper

Dual-Fuel Effects on HCCI Operating Range: Experiments with Primary Reference Fuels

2013-04-08
2013-01-1673
Results from a large set of HCCI experiments performed on a single-cylinder research engine fueled with different mixtures of iso-octane and n-heptane are presented and discussed in this paper. The experiments are designed to scrutinize fuel reactivity effects on the operating range of an HCCI engine. The fuel effects on upper and lower operating limits are measured respectively by the maximum pressure rise rate inside the cylinder and the stability of engine operation as determined by cycle-to-cycle variations in IMEP. Another set of experiments that examine the intake air heating effects on HCCI engine performance, exhaust emissions and operating envelopes is also presented. The effects of fuel reactivity and intake air heating on the HCCI ranges are demonstrated by constructing the operating envelopes for the different test fuels and intake temperatures.
Journal Article

A Monte Carlo Based Turbulent Flame Propagation Model for Predictive SI In-Cylinder Engine Simulations Employing Detailed Chemistry for Accurate Knock Prediction

2012-09-10
2012-01-1680
This paper reports on a turbulent flame propagation model combined with a zero-dimensional two-zone stochastic reactor model (SRM) for efficient predictive SI in-cylinder combustion calculations. The SRM is a probability density function based model utilizing detailed chemistry, which allows for accurate knock prediction. The new model makes it possible to - in addition - study the effects of fuel chemistry on flame propagation, yielding a predictive tool for efficient SI in-cylinder calculations with all benefits of detailed kinetics. The turbulent flame propagation model is based on a recent analytically derived formula by Kolla et al. It was simplified to better suit SI engine modelling, while retaining the features allowing for general application. Parameters which could be assumed constant for a large spectrum of situations were replaced with a small number of user parameters, for which assumed default values were found to provide a good fit to a range of cases.
Technical Paper

Self-Calibrating Model for Diesel Engine Simulations

2012-04-16
2012-01-1072
A self-calibrating model for Diesel engine simulations is presented. The overall model consists of a zero-dimensional direct injection stochastic reactor model (DI-SRM) for engine in-cylinder processes simulations and a package of optimization algorithms (OPAL) suitable for solving various optimization, automatization and search problems. In the DI-SRM, based on an extensive model parameters study, the mixing time history that affects the level of in-cylinder turbulence was selected as a main calibration parameter. As targets during calibration against the experimental data, in-cylinder pressure history and engine-out emissions, including nitrogen oxides and unburned hydrocarbons were chosen. The calibration task was solved using DI-SRM and OPAL working as an integrated tool. Within OPAL, genetic algorithms (GA) were used to determine model constants necessary for calibrating. Engine-out emissions in DI-SRM were calculated based on the reduced mechanism of n-heptane.
Technical Paper

A Fast Tool for Predictive IC Engine In-Cylinder Modelling with Detailed Chemistry

2012-04-16
2012-01-1074
This paper reports on a fast predictive combustion tool employing detailed chemistry. The model is a stochastic reactor based, discretised probability density function model, without spatial resolution. Employing detailed chemistry has the potential of predicting emissions, but generally results in very high CPU costs. Here it is shown that CPU times of a couple of minutes per cycle can be reached when applying detailed chemistry, and CPU times below 10 seconds per cycle can be reached when using reduced chemistry while still catching in-cylinder in-homogeneities. This makes the tool usable for efficient engine performance mapping and optimisation. To meet CPU time requirements, automatically load balancing parallelisation was included in the model. This allowed for an almost linear CPU speed-up with number of cores available.
Technical Paper

HCCI Combustion Control Using Dual-Fuel Approach: Experimental and Modeling Investigations

2012-04-16
2012-01-1117
A dual-fuel approach to control combustion in HCCI engine is investigated in this work. This approach involves controlling the combustion heat release rate by adjusting fuel reactivity according to the conditions inside the cylinder. Experiments were performed on a single-cylinder research engine fueled with different ratios of primary reference fuels and operated at different speed and load conditions, and results from these experiments showed a clear potential for the approach to expand the HCCI engine operation window. Such potential is further demonstrated dynamically using an optimized stochastic reactor model integrated within a MATLAB code that simulates HCCI multi-cycle operation and closed-loop control of fuel ratio. The model, which utilizes a reduced PRF mechanism, was optimized using a multi-objective genetic algorithm and then compared to a wide range of engine data.
Technical Paper

Multi-Objective Optimization of a Kinetics-Based HCCI Model Using Engine Data

2011-08-30
2011-01-1783
A multi-objective optimization scheme based on stochastic global search is developed and used to examine the performance of an HCCI model containing a reduced chemical kinetic mechanism, and to study interrelations among different model responses. A stochastic reactor model of an HCCI engine is used in this study, and dedicated HCCI engine experiments are performed to provide reference for the optimization. The results revealed conflicting trends among objectives normally used in mechanism optimization, such as ignition delay and engine cylinder pressure history, indicating that a single best combination of optimization variables for these objectives did not exist. This implies that optimizing chemical mechanisms to maintain universal predictivity across such conflicting responses will only yield a predictivity tradeoff. It also implies that careful selection of optimization objectives increases the likelihood of better predictivity for these objectives.
Technical Paper

Diesel-PPC engine: Predictive Full Cycle Modeling with Reduced and Detailed Chemistry

2011-08-30
2011-01-1781
Partially Premixed Combustion (PPC) engines have demonstrated a potential for high efficiency and low emissions operation. To be able to study the combustion in detail but also to perform parametric studies on the potential of the PPC concept a one dimensional (1D) engine simulation tool was used with 1; a prescribed burn rate 2; predictive combustion tool with reduced chemical model and 3; predictive combustion tool with detailed chemical models. Results indicate that fast executing reduced chemistry work reasonably well in predicting PPC performance and that n-decane is possibly a suitable diesel substitute in PPC modeling while n-heptane is not.
X