Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Indirect Assessment of Isentropic Efficiency in Turbocharger Turbines via Mechanical Efficiency Evaluation under Quasi-Adiabatic Test

2023-08-28
2023-24-0121
The isentropic efficiency estimation of small radial turbines is an important aspect of turbocharger performance evaluation. Because of inaccuracies in measuring the outlet temperature due to the non-homogeneous flow field distribution, it is common practice to refer to the thermomechanical efficiency, defined as the product of mechanical and turbine isentropic efficiencies. This paper proposes a method for the indirect evaluation of turbine isentropic efficiency through specific experimental tests. In particular, the evaluation of friction losses in the bearings can be assessed thanks to experimental investigations in quasi-adiabatic condition. By maintaining the turbine inlet temperature and the average temperature of lubricating oil and water-cooling circuit equal to the compressor outlet temperature, a negligible heat transfer between turbine and compressor can be achieved.
Technical Paper

Incipient Surge Detection in Automotive Turbocharger Compressors

2019-09-09
2019-24-0186
Nowadays, turbocharging is a technique widely used to improve fuel consumption and exhaust emissions in automotive engines. Centrifugal compressors are typically adopted, even if an efficient engine integration is often restricted by surge phenomena. The focus of the present work is to describe an experimental analysis developed with the aim at characterizing and identifying compressor behavior in incipient surge conditions. The acoustic and vibrational operative response of two automotive centrifugal compressors has been experimentally analyzed on the test facility operating at the University of Genoa. Each compressor is characterized by a classical architecture and one of them is equipped with a “ported shroud”, which enlarges stable zone. Compressors characteristic curves have been measured under steady flow conditions for different levels of corrected rotational speed from the choking region to the surge line.
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

A Physics-Based, Control-Oriented Turbocharger Compressor Model for the Prediction of Pressure Ratio at the Limit of Stable Operations

2019-04-02
2019-01-0320
Downsizing and boosting is currently the principal solution to reduce fuel consumption in automotive engines without penalizing the power output. A key challenge for controlling the boost pressure during highly transient operations lies in avoiding to operate the turbocharger compressor in its instability region, also known as surge. While this phenomenon is well known by control engineers, it is still difficult to accurately predict during transient operations. For this reason, the scientific community has directed considerable efforts to understand the phenomena leading to the onset of unstable behavior, principally through experimental investigations or high-fidelity CFD simulations. On the other hand, less emphasis has been placed on creating control-oriented models that adopt a physics-based (rather than data-driven) approach to predict the onset of instability phenomena.
Technical Paper

Experimental Investigation on Surge Phenomena in an Automotive Turbocharger Compressor

2018-04-03
2018-01-0976
Downsizing and turbocharging are today considered an effective way to reduce CO2 emissions in automotive gasoline engines, especially for the European and US markets. In the broad field of research and development for engine boosting systems, the instability phenomenon of surge has gathered considerable interest in recent years, as the main limiting factor to high performance boosting and boost pressure control. To this extent, developing an in-depth knowledge of the surge dynamics and on the phenomena governing the transition from stable to unstable operation can provide very valuable information for the design of the intake system and boost pressure control algorithms, allowing optimal boost pressure without compromising the transient response.
Technical Paper

Heat Transfer Effect on Performance Map of a Turbocharger Turbine for Automotive Application

2017-03-28
2017-01-1036
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated leading some Authors to propose different correction models. The aim of the paper is to investigate the effect of heat transfer phenomena on the experimental definition of turbocharger maps, focusing on turbine performance. An experimental investigation on a small turbocharger for automotive application has been carried out and presented. The study focused onto the effects of internal heat transfer on turbine thermomechanical efficiency. The experimental campaign was developed considering the effect of different heat transfer state by varying turbine inlet temperature, oil and coolant temperature and compressor inlet pressure. An original model previously developed by the Authors is adopted for the correction of compressor steady flow maps.
Technical Paper

Towards the Direct Evaluation of Turbine Isentropic Efficiency in Turbocharger Testing

2016-04-05
2016-01-1033
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary in order to get a better understanding of its performance. The availability of experimental information on realistic turbine steady flow performance is an essential requirement to optimize engine-turbocharger matching calculations developed in simulation models. This aspect is more noticeable as regards turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine. Actually, in the case of a turbocharger turbine, isentropic efficiency directly evaluated starting from measurement of thermodynamic parameters at the inlet and outlet sections can give significant errors.
Technical Paper

Experimental and Numerical Analysis of Mechanical Friction Losses in Automotive Turbochargers

2016-04-05
2016-01-1026
Today turbocharging represents a key technology to reduce fuel consumption and exhaust emissions for both Spark Ignition and diesel engines, moreover improving performance. 1D models, generally employed to compute the engine-turbocharger matching conditions, can be optimized basing on certain information about turbine and compressor behavior. Because of difficulty in the correct evaluation of turbine isentropic efficiency with direct techniques, turbocharger turbine efficiency is generally referred to thermomechanical efficiency. To this aim, the possibility to accurately estimate power losses in turbocharger bearings can allow the assessment of the turbine isentropic efficiency starting from the thermomechanical one. In the paper, an experimental and theoretical study on turbocharger mechanical losses is presented. The proposed model, developed in the MATLAB environment, refers to radial and axial bearings.
Journal Article

Experimental Investigation and 1D Simulation of a Turbocharger Compressor Close to Surge Operation

2015-04-14
2015-01-1720
Downsizing is widely considered one of the main path to reduce the fuel consumption of spark ignition internal combustion engines. As known, despite the reduced size, the required torque and power targets can be attained thanks to an adequate boost level provided by a turbocharger. However, some drawbacks usually arise when the engine operates at full load and low speeds. In fact, in the above conditions, the boost pressure and the engine performance is limited since the compressor experiences close-to-surge operation. This occurrence is even greater in case of extremely downsized engines with a reduced number of cylinders and a small intake circuit volume, where the compressor works under strongly unsteady flow conditions and its instantaneous operating point most likely overcomes the steady surge margin. In the paper, both experimental and numerical approaches are followed to describe the unsteady behavior of a small in-series turbocharger compressor.
Technical Paper

Heat Transfer Effects on Performance Map of a Turbocharger Compressor for Automotive Application

2015-04-14
2015-01-1287
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated leading some authors to propose different correction models. The accuracy of performance maps constitutes the basis of the turbocharger matching with the engine, for which 1D procedures are more and more adopted. The classical quasi-steady approach generally used is based on the employment of compressor and turbine characteristic maps assuming adiabatic turbocharger conditions. The aim of the paper is to investigate the effect of heat transfer phenomena on the experimental definition of turbocharger maps, focusing on compressor performance. This work was developed within a collaboration between the Polytechnic School of the University of Genoa and CRITT M2A. The compressor steady flow behavior was analyzed through tests performed on different test rigs operating at the University of Genoa and at CRITT M2A, under various heat transfer conditions.
Technical Paper

Numerical Evaluation of an Electric Turbo Compound for SI Engines

2014-11-11
2014-32-0013
To downsize a spark ignited (SI) internal combustion engine (ICE), keeping suitable power levels, the application of turbocharging is mandatory. The possibility to couple an electric drive to the turbocharger (electric turbo compound, ETC) can be considered, as demonstrated by a number of studies and the current application in the F1 Championship, since it allows to extend the boost region to the lowest ICE rotational speeds and to reduce the turbo lag. As well, some recovery of the exhaust gas residual energy to produce electrical energy is possible. The present paper shows the first numerical results of a research program under way in collaboration between the Universities of Pisa and Genoa. The study is focused on the evaluation of the benefits resulting from the application of ETC to a twin-cylinder small SI engine (900 cm3).
Journal Article

Advanced Numerical/Experimental Methods for the Analysis of a Waste-Gated Turbocharger Turbine

2014-04-01
2014-01-1079
In the paper the results of an experimental campaign regarding the steady characterization of a turbocharger waste-gated turbine (IHI-RHF3) for gasoline engine application are presented. The turbine behavior is analyzed in a specialized test rig operating at the University of Genoa, under different openings of the waste-gate valve. The test facility allows to measure inlet and outlet static pressures, mass flow rate and turbocharger rotational speed. The above data constitute the basis for the tuning and validation of a numerical procedure, recently developed at the University of Naples, following a 1D approach (1D turbine model - 1DTM). The model geometrically schematizes the entire turbine based on few linear and angular dimensions directly measured on the hardware. The 1D steady flow equations are then solved within the stationary and rotating channels constituting the device. All the main flow losses are properly taken into account in the model.
Journal Article

Effect of Pulsating Flow Characteristics on Performance and Surge Limit of Automotive Turbocharger Compressors

2012-04-16
2012-01-0715
The flow in turbocharger compressors and turbines for automotive engine application is highly unsteady in nature, as it responds to the intake and exhaust manifolds of the internal combustion engine. The optimization of the turbocharger system is therefore a very difficult task, since only steady flow maps are generally provided by turbocharger manufacturer. For several years a specialized components test facility operates at the University of Genoa, particularly suitable to test turbochargers under steady and unsteady flow conditions. The test bench has been continuously upgraded in order to study components under pulsating flow condition by using different layout configurations. A recent set-up makes it possible to study turbocharger compressor under unsteady flow condition by using a rotating valve pulse generator system. Measurements of pressure signals downstream the compressor, instantaneous mass flow rate and turbocharger rotational speed are performed.
Journal Article

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2011-04-12
2011-01-1147
Turbocharging technique will play a fundamental role in the near future not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions both in Spark Ignition and diesel automotive applications. To achieve excellent engine performance for road application, it is necessary to overcome some typical turbocharging drawbacks i.e., low end torque level and transient response. Experimental studies, developed on dedicated test facilities, can supply a lot of information to optimize the engine-turbocharger matching, especially if tests can be extended to the typical engine operating conditions (unsteady flow). Different numerical procedures have been developed at the University of Naples to predict automotive turbocharger compressor performance both under steady and unsteady flow conditions. A classical 1D approach, based on the employment of compressor characteristic maps, was firstly followed.
Technical Paper

Experimental Investigation on Open Waste-Gate Behaviour of Automotive Turbochargers

2008-10-07
2008-36-0052
Turbocharging is becoming a key technology for automotive engines as a support to the downsizing concept to get reduced CO2 emissions. Usually, a waste gate (WG) valve is installed as a turbocharger regulating system in spark ignition (SI) applications; however, further research work is required to improve engine-turbocharger matching when the by-pass port is open. An experimental investigation was developed at the University of Genoa (Italy) on a small waste-gated turbocharger in order to get a better understanding of WG behaviour and of its interactions with the turbine rotor flow. In the paper the main results are presented focusing on impeller and by-pass mass flow contributions and on turbine volute pressure distribution.
Technical Paper

Waste-Gate Turbocharging Control in Automotive SI Engines: Effect on Steady and Unsteady Turbine Performance

2007-08-05
2007-01-3543
Turbocharging is becoming a key technology for automotive spark ignition engines (fed with both liquid and gaseous fuel) as a support to the downsizing concept in order to reduce fuel consumption and exhaust emissions. A waste-gate valve is usually fitted as turbocharger control system in these applications, due to its ability to work at very high exhaust gas temperatures. However, not much information is generally available on turbine behaviour in the opened waste-gate area. This paper presents the results of an experimental study developed on a waste-gated turbocharger for downsized SI automotive engines, performed on the test rig operating at the University of Genoa (Italy), extended both to steady and unsteady flow operation. Mass flow through the by-pass valve and turbine impeller was measured at different waste-gate settings in steady flow conditions.
Technical Paper

Transient Performance of Automotive Turbochargers: Test Facility and Preliminary Experimental Analysis

2005-09-11
2005-24-066
Experimental investigations on automotive engine intake and exhaust components are fundamental to achieve a better understanding of their behaviour both in steady and transient operation. To this purpose a dedicated test facility, particularly suited for the evaluation of exhaust turbochargers performance, has been operating at the University of Genoa (ICEG). In the paper a new arrangement of the testing circuit and of the relevant measuring system is presented. At the conclusion of the plant setup a first investigation on a typical automotive turbocharger for spark ignition application was developed. After measuring compressor and turbine steady flow curves in a wide operating range, the attention was focused on unsteady flow phenomena in the exhaust subsystem when using the two pulsating flow generators available on the test rig. The relevant results are presented in the paper referring to measured pressure diagrams.
Technical Paper

Effect of Inlet Pulsating Pressure Characteristics on Turbine Performance of an Automotive Wastegated Turbocharger

1990-02-01
900359
The results of an extensive investigation developed on the wastegated radial flow turbine of a small automotive turbocharger are presented in this paper. Test rig measurements were performed to point out the influence of the by-pass opening on turbine performance. The analysis was extended both to steady and pulsating flow conditions, and controlled values of the main parameters of generated unsteady flow were obtained by a new dedicated turbine feeding line. A specific test method was followed in order to prevent inaccuracies in the definition of the waste-gate opening. The hypothesis assuming the turbine impeller and the waste-gate as two independent nozzles was studied in steady flow conditions. Turbine measured pulsating performance, which generally resulted higher than steady flow, was compared with the values supplied by analytical predicting models based on the quasi-steady flow assumption.
X