Refine Your Search

Search Results

Viewing 1 to 12 of 12
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
CURRENT
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Guidelines for Laboratory Cyclic Corrosion Test Procedures for Painted Automotive Parts

2016-04-05
CURRENT
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Proving Ground Vehicle Corrosion Testing

2016-04-05
CURRENT
J1950_201604
The facilities used by domestic automotive manufacturers to provide accelerated corrosion aging of complete vehicles are described in general. The types of vehicles tested, general test methodology, and techniques used to determine test-to-field correlation are discussed. The different procedures used throughout the industry produce different results on various vehicle coatings, components, and systems. The key to successful interpretation of test results is a thorough understanding of the corrosion mechanisms involved and the effects of test limitations on these mechanisms.
Standard

Laboratory Cyclic Corrosion Test

2016-04-05
CURRENT
J2334_201604
The SAE J2334 lab test procedure should be used when determining corrosion performance for a particular coating system, substrate, process, or design. Since it is a field-correlated test, it can be used as a validation tool as well as a development tool. If corrosion mechanisms other than cosmetic or general corrosion are to be examined using this test, field correlation must be established.
Standard

Laboratory Cyclic Corrosion Test

2003-12-01
HISTORICAL
J2334_200312
The SAE J2334 lab test procedure should be used when determining corrosion performance for a particular coating system, substrate, process, or design. Since it is a field-correlated test, it can be used as a validation tool as well as a development tool. If corrosion mechanisms other than cosmetic or general corrosion are to be examined using this test, field correlation must be established.
Standard

Testing Dynamic Properties of Elastomeric Isolators

1999-05-01
HISTORICAL
J1085_199905
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

GUIDELINES FOR LABORATORY CYCLIC CORROSION TEST PROCEDURES FOR PAINTED AUTOMOTIVE PARTS

1993-10-13
HISTORICAL
J1563_199310
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

PROVING GROUND VEHICLE CORROSION TESTING

1989-05-01
HISTORICAL
J1950_198905
The facilities used by domestic automotive manufacturers to provide accelerated corrosion aging of complete vehicles are described in general. The types of vehicles tested, general test methodology, and techniques used to determine test-to-field correlation are discussed. The different procedures used throughout the industry produce different results on various vehicle coatings, components, and systems. The key to successful interpretation of test results is a thorough understanding of the corrosion mechanisms involved and the effects of test limitations on these mechanisms.
X