Refine Your Search

Topic

Search Results

Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Technical Paper

Effects of Seat and Sitter Dimensions on Pressure Distribution in Automotive Seats

2017-03-28
2017-01-1390
Seat fit is characterized by the spatial relationship between the seat and the vehicle occupant’s body. Seat surface pressure distribution is one of the best available quantitative measures of this relationship. However, the relationships between sitter attributes, pressure, and seat fit have not been well established. The objective of this study is to model seat pressure distribution as a function of the dimensions of the seat and the occupant’s body. A laboratory study was conducted using 12 production driver seats from passenger vehicles and light trucks. Thirty-eight men and women sat in each seat in a driving mockup. Seat surface pressure distribution was measured on the seatback and cushion. Relevant anthropometric dimensions were recorded for each participant and standardized dimensions based on SAE J2732 (2008) were acquired for each test seat.
Technical Paper

Development and Validation of an Older Occupant Finite Element Model of a Mid-Sized Male for Investigation of Age-related Injury Risk

2015-11-09
2015-22-0014
The aging population is a growing concern as the increased fragility and frailty of the elderly results in an elevated incidence of injury as well as an increased risk of mortality and morbidity. To assess elderly injury risk, age-specific computational models can be developed to directly calculate biomechanical metrics for injury. The first objective was to develop an older occupant Global Human Body Models Consortium (GHBMC) average male model (M50) representative of a 65 year old (YO) and to perform regional validation tests to investigate predicted fractures and injury severity with age. Development of the GHBMC M50 65 YO model involved implementing geometric, cortical thickness, and material property changes with age. Regional validation tests included a chest impact, a lateral impact, a shoulder impact, a thoracoabdominal impact, an abdominal bar impact, a pelvic impact, and a lateral sled test.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

2014-11-10
2014-22-0015
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Journal Article

Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

2013-04-08
2013-01-0452
Seat comfort is driven in part by the fit between the sitter and seat. Traditional anthropometric data provide little information about the size and shape of the torso that can be used for backrest design. This study introduces a methodology for using three-dimensional computer models of the human torso based on a statistical analysis of body shapes for conducting automated fit assessments. Surface scan data from 296 men and 417 women in a seated posture were analyzed to create a body shape model that can be adjusted to a range of statures, body shape, and postures spanning those typical of vehicle occupants. Finite-element models of two auto seat surface were created, along with custom software that generates body models and postures them in the seat. A simple simulation technique was developed to rapidly assess the fit of the torso relative to the seat back.
Journal Article

Distribution of Belt Anchorage Locations in the Second Row of Passenger Cars and Light Trucks

2013-04-08
2013-01-1157
Seat belt anchorage locations have a strong effect on occupant protection. Federal Motor Vehicle Safety Standard (FMVSS) 210 specifies requirements for the layout of the anchorages relative to the seating reference point and seat back angle established by the SAE J826 H-point manikin. Sled testing and computational simulation has established that belt anchorage locations have a strong effect on occupant kinematics, particularly for child occupants using the belt as their primary restraint. As part of a larger study of vehicle geometry, the locations of the anchorage points in the second-row, outboard seating positions of 83 passenger cars and light trucks with a median model year of 2005 were measured. The lower anchorage locations spanned the entire range of lap belt angles permissible under FMVSS 210 and the upper anchorages (D-ring locations) were distributed widely as well.
Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

2009-06-09
2009-01-2284
The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Comparison of ATD and Driver Knee Positions

2009-04-20
2009-01-0390
Contact between the knees and knee bolster commonly occurs in frontal collisions. The contact region on the bolster and the knee anatomy involved are related to the pre-crash positioning of the knees. The location of the distal (or infra-) patella was recorded on volunteers of widely varying stature after they had selected a comfortable driving position in mockups of three vehicles representing a large variation in size and shape: sedan, crossover SUV, and full-size pickup. On average, the right knees were grouped more tightly and were located more forward and lower than the left knees. On average, the knees were positioned 200 mm from the knee bolster for all subjects. The range of distance separating the distal patellae (within subject knee-to-knee distance) varied from 184–559 mm for all subjects for the three vehicles.
Technical Paper

Characterization of Knee-Thigh-Hip Response in Frontal Impacts Using Biomechanical Testing and Computational Simulations

2008-11-03
2008-22-0017
Development and validation of crash test dummies and computational models that are capable of predicting the risk of injury to all parts of the knee-thigh-hip (KTH) complex in frontal impact requires knowledge of the force transmitted from the knee to the hip under knee impact loading. To provide this information, the knee impact responses of whole and segmented cadavers were measured over a wide range of knee loading conditions. These data were used to develop and help validate a computational model, which was used to estimate force transmitted to the cadaver hip. Approximately 250 tests were conducted using five unembalmed midsize male cadavers. In these tests, the knees were symmetrically impacted with a 255-kg padded impactor using three combinations of knee-impactor padding and velocity that spanned the range of knee loading conditions produced in FMVSS 208 and NCAP tests. Each subject was tested in four conditions.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Journal Article

Postural Behaviors during One-Hand Force Exertions

2008-06-17
2008-01-1915
Posture and external loads such as hand forces have a dominant effect on ergonomic analysis outcomes. Yet, current digital human modeling tools used for proactive ergonomics analysis lack validated models for predicting postures for standing hand-force exertions. To address this need, the effects of hand magnitude and direction on whole-body posture for standing static hand-force exertion tasks were quantified in a motion-capture study of 19 men and women with widely varying body size. The objective of this work was to identify postural behaviors that might be incorporated into a posture-prediction algorithm for standing hand-force tasks. Analysis of one-handed exertions indicates that, when possible, people tend to align their bodies with the direction of force application, converting potential cross-body exertions into sagittal plane exertions. With respect to the hand-force plane, pelvis position is consistent with a postural objective of reducing rotational trunk torques.
Technical Paper

Assessing the Importance of Motion Dynamics for Ergonomic Analysis of Manual Materials Handling Tasks using the AnyBody Modeling System

2007-06-12
2007-01-2504
Most current applications of digital human figure models for ergonomic assessments of manual tasks focus on the analysis of a static posture. Tools available for static analysis include joint-specific strength, calculation of joint moments, balance maintenance capability, and low-back compression or shear force estimates. Yet, for many tasks, the inertial loads due to acceleration of body segments or external objects may contribute significantly to internal body forces and tissue stresses. Due to the complexity of incorporating the dynamics of motion into analysis, most commercial software packages used for ergonomic assessment do not have the capacity to include dynamic effects. Thus, commercial human modeling packages rarely provide an opportunity for the user to determine if a static analysis is sufficient.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

2007-06-12
2007-01-2478
Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Technical Paper

Predicting Force-Exertion Postures from Task Variables

2007-06-12
2007-01-2480
Accurate representation of working postures is critical for ergonomic assessments with digital human models because posture has a dominant effect on analysis outcomes. Most current digital human modeling tools require manual manipulation of the digital human to simulate force-exertion postures or rely on optimization procedures that have not been validated. Automated posture prediction based on human data would improve the accuracy and repeatability of analyses. The effects of hand force location, magnitude, and direction on whole-body posture for standing tasks were quantified in a motion-capture study of 20 men and women with widely varying body size. A statistical analysis demonstrated that postural variables critical for the assessment of body loads can be predicted from the characteristics of the worker and task.
Technical Paper

Improved Positioning Procedures for 6YO and 10YO ATDs Based on Child Occupant Postures

2006-11-06
2006-22-0014
The outcomes of crash tests can be influenced by the initial posture and position of the anthropomorphic test devices (ATDs) used to represent human occupants. In previous work, positioning procedures for ATDs representing adult drivers and rear-seat passengers have been developed through analysis of posture data from human volunteers. The present study applied the same methodology to the development of positioning procedures for ATDs representing six-year-old and ten-year-old children sitting on vehicle seats and belt-positioning boosters. Data from a recent study of 62 children with body mass from 18 to 45 kg were analyzed to quantify hip and head locations and pelvis and head angles for both sitter-selected and standardized postures. In the present study, the 6YO and 10YO Hybrid-III ATDs were installed using FMVSS 213 procedures in six test conditions used previously with children.
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

A Task-Based Stepping Behavior Model for Digital Human Models

2006-07-04
2006-01-2364
Cyclical stepping (gait) has been studied extensively. Some of these results are reflected in the straight and curved path step-following algorithms in commercial digital human modeling (DHM) implementations. With the aid of these algorithms, DHM users define start, intermediate, and end path points and the software generates a walking-like motion along the path. Most of these algorithms have substantial limitations, among them that the figures exhibit “foot skate,” meaning that the kinematic constraint of foot contact with the ground is not respected. Turning is accomplished by pivoting the entire figure, rather than through realistic lower-extremity motions. The simulation of the non-cyclical stepping motions accompanying manual material handling pickup and delivery tasks requires manual manikin manipulation. This paper proposes a paradigm for the simulation of stepping behavior in digital human models based on a model of foot placements and motions.
Technical Paper

Optimizing Vehicle Occupant Packaging

2006-04-03
2006-01-0961
Occupant packaging practice relies on statistical models codified in SAE practices, such as the SAE J941 eyellipse, and virtual human figure models representing individual occupants. The current packaging approach provides good solutions when the problem is relatively unconstrained, but achieving good results when many constraints are active, such as restricted headroom and sightlines, requires a more rigorous approach. Modeling driver needs using continuous models that retain the residual variance associated with performance and preference allows use of optimization methodologies developed for robust design. Together, these models and methods facilitate the consideration of multiple factors simultaneously and tradeoff studies can be performed. A case study involving the layout of the interior of a passenger car is presented, focusing on simultaneous placement of the seat and steering wheel adjustment ranges.
X