Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Technical Paper

Effects of Low Temperature Reforming (LTR) Products of Low Octane Number Fuels on HCCI Combustion

2018-09-10
2018-01-1682
In order to achieve high-efficiency and clean combustion in HCCI engines, combustion must be controlled reasonably. A great variety of species with various reactivities can be produced through low temperature oxidation of fuels, which offers possible solutions to the problem of controlling in-cylinder mixture reactivity to accommodate changes in the operating conditions. In this work, in-cylinder combustion characteristics with low temperature reforming (LTR) were investigated in an optical engine fueled with low octane number fuel. LTR was achieved through low temperature oxidation of fuels in a reformer (flow reactor), and then LTR products (oxidation products) were fed into the engine to alter the charge reactivity. Primary Reference Fuels (blended fuel of n-heptane and iso-octane, PRFs) are often used to investigate the effects of octane number on combustion characteristics in engines.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

Experimental and Modelling Investigations of the Gasoline Compression Ignition Combustion in Diesel Engine

2017-03-28
2017-01-0741
In this work the gasoline compression ignition (GCI) combustion characterized by both premixed gasoline port injection and gasoline direct injection in a single-cylinder diesel engine was investigated experimentally and computationally. In the experiment, the premixed ratio (PR), injection timing and exhaust gas recirculation (EGR) rate were varied with the pressure rise rate below 10 bar/crank angle. The experimental results showed that higher PR and earlier injection timing resulted in advanced combustion phasing and improved thermal efficiency, while the pressure rise rates and NOx emissions increased. Besides, a lowest ISFC of 176 g/kWh (corresponding to IMEP =7.24 bar) was obtained, and the soot emissions could be controlled below 0.6 FSN. Despite that NOx emission was effectively reduced with the increase of EGR, HC and CO emissions were high. However, it showed that GCI combustion of this work was sensitive to EGR, which may restrict its future practical application.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes

2016-10-17
2016-01-2185
In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
Technical Paper

Effects of Dual Loop EGR and Variable Geometry Turbocharger on Performance and Emissions of a Diesel Engine

2016-10-17
2016-01-2340
An experimental study is carried out to investigate the coupling between dual loop EGR (DL-EGR) and variable geometry turbocharger (VGT) on a heavy-duty commercial diesel engine under different operating conditions and inlet conditions. The effects of VGT rack position and high-pressure (HP) proportion in DL-EGR on engine performance and emissions are studied. The boosting system is a series 2-stage turbocharger with a VGT as the HP-stage. The HP-Proportion in DL-EGR is swept from 0% to 100% while several intake pressure values and EGR rates are fixed by adjusting the VGT position. Results demonstrate that the VGT and HP EGR both have great influence on the exhaust enthalpy and turbocharger efficiency. The exhaust enthalpy and the intake demand have great influence on the DL-EGR split strategy.
Journal Article

Study on the Double Injection Strategy of Gasoline Partially Premixed Combustion under a Light-Duty Optical Engine

2016-10-17
2016-01-2299
Gasoline partially premixed combustion (PPC) is a potential combustion concept to achieve high engine efficiency as well as low NOx and soot emissions. But the in-cylinder process of PPC is not well understood. In the present study, the double injection strategy of PPC was investigated on a light-duty optical engine. The fuel/air mixing and combustion process of PPC was evaluated by fuel-tracer planar laser-induced fluorescence (PLIF) and high-speed natural luminosity imaging technique, respectively. Combustion emission spectra of typical double injection case were analyzed. The primary reference fuel, PRF70 (70% iso-octane and 30% n-heptane by volume) was chosen as the lower reactivity fuel like gasoline. Double injection strategies of different first fuel injection timing and mass ratio of the two fuel injections were comparatively studied.
Technical Paper

A Comparative Study on the Fuel Economy Improvement of a Natural Gas SI Engine at the Lean Burn and the Stoichiometric Operation both with EGR under the Premise of Meeting EU6 Emission Legislation

2015-09-01
2015-01-1958
In order to further study the effects of air and EGR dilution on the fuel economy improvement of natural gas engines under the premise of meeting EU6 legislation, a comparison between stoichiometric operation with EGR and lean burn operation with and without EGR has been conducted at 1600rpm 50% and 75% load. The conversion efficiencies of the catalysts for both NOx and CH4 emissions are assumed at 90% for lean burn operation. Experiment results indicate that under the condition of meeting both NOx and CH4 predetermined engine-out emissions limits for EU6 legislation, lean operation with a small fraction of EGR dilution enables more advanced combustion phasing compared to pure lean operation, which results in much better fuel economy, thus further improvement compared to stoichiometric operation is achieved.
Technical Paper

Effects of Fuel Physical and Chemical Properties on Combustion and Emissions on Both Metal and Optical Diesel Engines and on a Partially Premixed Burner

2015-09-01
2015-01-1918
Effects of fuel physical and chemical properties on combustion and emissions were investigated on both metal and optical diesel engines. The new generation oxygenated biofuels, n-butanol and DMF (2,5-dimethylfuran) were blended into diesel fuel with 20% volume fraction and termed as Butanol20 and DMF20 respectively. The exhaust gas recirculation (EGR) rates were varied from zero to ∼60% covering both conventional and low temperature combustion. Meanwhile, the reference fuels such as n-heptane, cetane, and iso-cetane were also used to isolate the effects of different fuel properties on combustion and emissions. In addition, to clarify the effects of oxygenated structures on combustion and emissions, a fundamental partially premixed burner was also used. Results based on metal and optical diesel engines show that fuel cetane number is the dominated factor to affect the auto-ignition timing and subsequent combustion process.
Technical Paper

Effects of Dual Loop EGR on Performance and Emissions of a Diesel Engine

2015-04-14
2015-01-0873
An experimental study is carried out to compare the effects of high-pressure-loop, low-pressure-loop and dual-loop exhaust gas recirculation systems (HPL-EGR, LPL-EGR and DL-EGR) on the combustion characteristics, thermal efficiency and emissions of a diesel engine. The tests are conducted on a six-cylinder turbocharged heavy-duty diesel engine under various operating conditions. The low-pressure-loop portion (LPL-Portion) of DL-EGR is swept from 0% to 100% at several constant EGR rates, and the DL-EGR is optimized based on fuel efficiency. The results show that the LPL-EGR can attain the highest gross indicated thermal efficiency (ITEg) in the three EGR systems under all the tested conditions. At a middle load of 0.95 BMEP, 1660 r/min, the pumping losses of LPL-EGR lead to the lowest BTE among the EGR systems. The HPL-EGR can achieve the best brake thermal efficiency (BTE) and emissions within the EGR rate of 22.5% mainly due to the reduced pumping losses.
Technical Paper

Experimental and Modeling Study of Biodiesel Surrogates Combustion in a CI Engine

2013-04-08
2013-01-1130
This work concerns the oxidation of biodiesel surrogates in a CI engine. An experimental study has been carried out in a single-cylinder common-rail CI engine with soybean biodiesel and two biodiesel surrogates containing neat methyl decanoate and methyl decanoate/n-heptane blends. Tests have been conducted with various intake oxygen concentrations ranging from 21% to approximately 9% at intake temperatures of 25°C and 50°C. The results showed that the ignition delay and smoke emissions of neat methyl decanoate were closer to that of soybean biodiesel as compared with methyl decanoate/n-heptane blends. A reduced chemical kinetic mechanism for the oxidation of methyl decanoate has been developed and applied to model internal combustion engines. A KIVA code, coupled with the Chemkin chemistry solver, was used as the computational platforms. The effects of various intake oxygen concentrations on the in-cylinder emissions of OH and soot were discussed.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

2012-04-16
2012-01-0694
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Technical Paper

Study of Biodiesel Combustion in a Constant Volume Chamber with Different Ambient Temperature and Oxygen Concentration

2011-08-30
2011-01-1931
Biodiesel is a widely used biofuel in diesel engines, which is of particular interest as a renewable fuel because it possesses the similar properties as the diesel fuel. The pure soybean biodiesel was tested in an optical constant volume combustion chamber using natural flame luminosity and forward illumination light extinction (FILE) methods to explore the combustion process and soot distribution at various ambient temperatures (800 K and 1000 K) and oxygen concentrations (21%, 16%, 10.5%). Results indicated that, with a lower ambient temperature, the autoignition delay became longer for all three oxygen concentrations and more ambient air was entrained by spray jet and more fuel was burnt by premixed combustion. With less ambient oxygen concentration, the heat release rate showed not only a longer ignition delay but also longer combustion duration.
Technical Paper

Diesel Engine Combustion Control: Medium or Heavy EGR?

2010-04-12
2010-01-1125
Exhaust Gas Recirculation (EGR) is an important parameter for control of diesel engine combustion, especially to achieve ultra low NOx emissions. In this paper, the effects of EGR on engine emissions and engine efficiency have been investigated in a heavy-duty diesel engine while changing combustion control parameters, such as injection pressure, injection timing, boost, compression ratio, oxygenated fuel, etc. The engine was operated at 1400 rpm for a cycle fuel rate of 50mg. The results show that NOx emissions strongly depend on the EGR rate. The effects of conventional combustion parameters, such as injection pressure, injection timing, and boost, on NOx emissions become small as the EGR rate is increased. Soot emissions depend strongly on the ignition delay and EGR rate (oxygen concentration). Soot emissions can be reduced by decreasing the compression ratio, increasing the injection pressure, or burning oxygenated fuel.
Technical Paper

An Investigation on the Effects of Fuel Chemistry and Engine Operating Conditions on HCCI Engine

2008-06-23
2008-01-1660
A HCCI engine has been run at different operating boundaries conditions with fuels of different RON and MON and different chemistries. The fuels include gasoline, PRF and the mixture of PRF and ethanol. Six operating boundaries conditions are considered, including different intake temperature (Tin), intake pressure (Pin) and engine speed. The experimental results show that, fuel chemistries have different effect on the combustion process at different operating conditions. It is found that CA50 (crank angle at 50% completion of heat release) shows no correlation with either RON or MON at some operating boundaries conditions, but correlates well with the Octane Index (OI) at all conditions. The higher the OI, the more the resistance to auto-ignition and the later is the heat release in the HCCI engine. The operating range is also correlation with the OI. The higher the OI, the higher IMEP can reach.
Technical Paper

The Influence of Boost Pressure and Fuel Chemistry on Combustion and Performance of a HCCI Engine

2008-04-14
2008-01-0051
The influence of boost pressure (Pin) and fuel chemistry on combustion characteristics and performance of homogeneous charge compression ignition (HCCI) engine was experimentally investigated. The tests were carried out in a modified four-cylinder direct injection diesel engine. Four fuels were used during the experiments: 90-octane, 93-octane and 97-octane primary reference fuel (PRF) blend and a commercial gasoline. The boost pressure conditions were set to give 0.1, 0.15 and 0.2MPa of absolute pressure. The results indicate that, with the increase of boost pressure, the start of combustion (SOC) advances, and the cylinder pressure increases. The effects of PRF octane number on SOC are weakened as the boost pressure increased. But the difference of SOC between gasoline and PRF is enlarged with the increase of boost pressure. The successful HCCI operating range is extended to the upper and lower load as the boost pressure increased.
Technical Paper

Effect of EGR on HCCI Combustion fuelled with Dimethyl Ether (DME) and Methanol Dual-Fuels

2005-10-24
2005-01-3730
The effects of cooled EGR on combustion and emission characteristics in HCCI operation region was investigated on a single-cylinder diesel engine, which is fitted with port injection of DME and methanol. The results indicate that EGR rate can enlarge controlled HCCI operating region, but it has little effect on the maximum load of HCCI engine fuelled with DME/methanol dual-fuels. With the increase of EGR rate, the main combustion ignition timing (MCIT) delays, the main combustion duration (MCD) prolongs, and the peak cylinder pressure and the peak rate of heat release decreases. Compared with EGR, DME percentage has an opposite effect on HCCI combustion characteristics. The increase of indicated thermal efficiency is a combined effect of EGR rate and DME percentage. Both HC and CO emissions ascend with EGR rate increasing, and decrease with DME percentage increasing. In normal combustion, NOX emissions are near zero.
Technical Paper

Experimental Study on the Effects of EGR and Octane Number of PRF Fuel on Combustion and Emission Characteristics of HCCI Engines

2005-04-11
2005-01-0174
The effects of Exhaust Gas Recirculation (EGR) and octane number of PRF fuel on combustion and emission characteristics in HCCI operation were investigated. The results show that EGR could delay the ignition timing, slow down the combustion reaction rate, reduce the pressure and average temperature in cylinder and extend the operation region into large load mode. With the increase of the fuel/air equivalence ratio or the fuel octane number (ON), the effect of EGR on combustion efficiency improves. With the increase of EGR rate, the combustion efficiency decreases. The optimum indicated thermal efficiency of different octane number fuels appears in the region of high EGR rate and large fuel/air equivalence ratio, which is next to the boundary of knocking. In the region of high EGR rate, HC emissions rise up sharply as the EGR rate increases. With the increase of octane number, this tendency becomes more obvious.
X