Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Improving Diesel Engine Performance Using Low and High Pressure Split Injections for Single Heat Release and Two-Stage Combustion

2010-04-12
2010-01-0340
This study explores an Adaptive Injection Strategy (AIS) that employs multiple injections at both low and high pressures to reduce spray-wall impingement, control combustion phasing, and limit pressure rise rates in a Premixed Compression Ignition (PCI) engine. Previous computational studies have shown that reducing the injection pressure of early injections can prevent spray-wall impingement caused by long liquid penetration lengths. This research focuses on understanding the performance and emissions benefits of low and high pressure split injections through experimental parametric sweeps of a 0.48 L single-cylinder test engine operating at 2000 rev/min and 5.5 bar nominal IMEP. This study examines the effects of 2nd injection pressure, EGR, swirl ratio, and 1st and 2nd injection timing, for both single heat release and two-peak high temperature heat release cases. In order to investigate the AIS concept experimentally, a Variable Injection Pressure (VIP) system was developed.
Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-04-03
2006-01-0921
The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Technical Paper

Modelling of Spray and In-cylinder Air Flow Interaction in Direct-Injection Engines

2001-11-01
2001-28-0071
A model is developed based on Lagrangian-drop and Eulerian-fluid procedure to simulate fuel spray structure and the interaction of spray with in-cylinder gas motion. The hollow cone spray is modeled assuming the sheet consisting of blobs of droplets and these blobs are further subjected to secondary breakup. The droplet equations of position, momentum and temperature have been solved by the fourth order Runge-Kutta scheme. The gas phase compressible flow is solved using the finite volume method in conjunction with the SIMPLEC algorithm. The coupling between gas phase and the liquid phase has been achieved through the source terms arising in each phase. Three-dimensional spray and interaction with air motion inside the cylinder have been performed. The results show that the spray structure is well simulated. The model predicts the entrained air velocities and the fuel vapour concentration distribution as a function of time.
X