Refine Your Search

Search Results

Technical Paper

Effect of Temperature-Pressure Time History on Auto-Ignition Delay of Air-Fuel Mixture

2018-09-10
2018-01-1799
When the compression ratio of the spark ignition engine is set high as a method of improving the fuel efficiency of passenger cars, it is often combined with the direct fuel injection system for knock mitigation. In port injection, there are also situations where the fuel is guided into the cylinder while the vaporization is insufficient, especially at the cold start. If the fuel is introduced into the cylinder in a liquid state, the temperature in the cylinder will change due to sensible heat and latent heat of the fuel during vaporization. Further, if the fuel is unevenly distributed in the cylinder, the effect of the specific heat is added, and the local temperature difference is expanded through the compression process. In this research, an experiment was conducted using a rapid compression machine for the purpose of discussing the effect of the temperature-pressure time history of fuel on ignition delay time.
Technical Paper

The Effect of Fuel Composition on Ignition Delay and Knocking in Lean Burn SI Engine

2017-11-05
2017-32-0112
Super lean burn technology is conceived as one of methods for improving the thermal efficiency of SI engines[1][2]. For lean burn, reduction of heat loss and the due to decrease in flame temperature can be expected. However, as the premixed gas dilutes, the combustion speed decreases, so the combustion fluctuation between cycles increases. Also, to improve the thermal efficiency, the ignition timing is advanced to advance the combustion phase. However, when the combustion phase is excessively advanced, knocking occurs, which hinders the improvement of thermal efficiency. Knocking is a phenomenon in which unburned gas in a combustion chamber compressed by a piston and combustion gas suffer compression auto-ignition. It is necessary to avoid knocking because the amplitude of the large pressure wave may cause noise and damage to the engine. Also, knocking is not a steady phenomenon but a phenomenon that fluctuates from cycle to cycle.
Technical Paper

Numerical Assessment of Controlling the Interval between Two Heat-Release Peaks for Noise Reduction in Split-injection PCCI Combustion

2015-09-01
2015-01-1851
In PCCI combustion with multiple injections, the mechanism having two heat release peaks which has a favorable characteristic of reducing noise is studied using numerical tool of single- and also multi-zone model of CHEMKIN PRO. In the present investigation, the physical issues, such as variations in the equivalent ratio and temperature caused by the fuel injection are simplified first so that the key issues of chemical reaction occurred in the combustion chamber can be extracted and are discussed in detail. The results show that the interval of two heat-release peaks can be controlled and as the number of zones of the calculation increases, the change in the timing of a heat release peak is increased but over three-zones, it is not affected any more. This indicates that to study about complex diesel combustion phenomena, three-to four-zone model shall give sufficiently accurate results.
Technical Paper

An Investigation of the Effects of Fuel Concentration Inhomogeneity on HCCI Combustion -Fuel Concentration of Pre-Mixture Using LIF measurement-

2015-09-01
2015-01-1788
HCCI (Homogeneous Charge Compression Ignition) engine has a problem which causes knocking when the maximum PRR (Pressure Rise Rate) reaches a certain level because it takes the form of combustion of simultaneous multi-point ignition by compression of the air-fuel pre-mixture. This study focused on stratified charge of fuel in combustion chamber. This method disperses the timing of local ignition. The distribution of fuel concentration is measured by using LIF (Laser Induced Fluorescence). As a result, the maximum PRR is reduced by stratified charge of fuel. In addition, it is confirmed that the dispersion of combustion timing depends on the dispersion of fuel concentration.
Technical Paper

An Investigation on the Auto-Ignition of Fuel-Air Mixture Induced by Release of Oil-Fuel Droplets from Cylinder-Liner Using Multi-Zone Model

2014-11-11
2014-32-0094
This study investigated effects of gas inhomogeneity induced by droplets of fuels and oils on the auto ignition timing and temperature in the direct-injection spark ignition (DISI) engine by means of detailed numerical calculation using multi zone model. Recent researchers pointed out that droplets are made of fuels and oils which mix on the cylinder liner and released from the cylinder liner [1]. During the compression stroke released droplets reach the auto ignition temperature before flame propagation induced by spark ignition. It is called Pre-ignition. In combustion chamber, there is inhomogeneity caused by temperature and mixture distribution. In this study, the effects of gas inhomogeneity produced by droplet on the auto ignition timing and temperature have been investigated using Multi-Zone model of CHEMKIN-PRO by changing initial temperature and initial equivalence ratio. Especially, the volume of first ignition zone is focused on.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

2014-11-11
2014-32-0108
Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Technical Paper

Simulation Study of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Propane

2014-04-01
2014-01-1104
A simulation study was conducted to examine the transition from SI combustion to HCCI combustion in a two-stroke free piston engine fuelled with propane. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. The dynamic model included an analysis of the piston motion, based on Newton's second law. The linear alternator model included an analysis of electromagnetic force, which was considered to be a resistance force for the piston motion. The thermodynamic model was used to analysis thermodynamic processes in the engine cycle, including scavenging, compression, combustion, and expansion processes. Therein, the scavenging process was assumed to be a perfect process. These mathematical models were combined and solved by a program written in Fortran.
Technical Paper

A Study of Fuel and EGR Stratification to Reduce Pressure-Rise Rates in a HCCI Engine

2013-10-15
2013-32-9070
Problem of HCCI combustion is knocking due to a steep heat release by the ignition that is occurred in each local area at the same time. It is considered that dispersion of auto-ignition timing at each local area in the combustion chamber is necessary to prevent this problem. One of technique of this solution is to make thermal stratification. It could be made by using two-stage ignition fuel, which has large heat release at low temperature reaction. Dispersion of fuel concentration leads to difference of temperature histories while combustion phasing is dispersed at each local area. Also, EGR gas stratification could make difference of temperature histories at each local area because of that of the characteristics. This study examines the effect of mixing stratification by stratifying the charge of fuel and CO2. A single-cylinder engine equipped with optical access was used in experiments, and numerical analysis was executed.
Journal Article

Closed-Loop Combustion Control of a HCCI Engine with Re-Breathing EGR System

2013-10-15
2013-32-9069
This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles.
Technical Paper

A Study for Generating Power on Operating Parameters of Powerpack Utilizing Linear Engine

2012-10-23
2012-32-0061
The research shows the experimental results for a free piston linear engine according to operation conditions of the linear engine and the structure of linear generator for generating electric power. The powerpack used in this paper consists of the two-stroke free piston linear engine, linear generators and air compressors. Each parameter of fuel input heat, equivalence ratio, spark timing delay, electrical resistance and air gap length were set up to identify the combustion characteristics and to examine the performance of linear engine. The linear engine was fueled with propane. In the course of all linear engine operations, intake air was inputted under the wide open throttle state. Air and fuel mass flow rate were varied by using mass flow controller and these were premixed by pre-mixing device. Subsequently, pre-mixture was directly supplied into each cylinder.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

A Study on Supercharged HCCI Natural Gas Engines

2005-10-12
2005-32-0021
The possibility of turbocharging into a natural gas homogeneous charge compression ignition (HCCI) engine is investigated experimentally and by simulation. Experiments are performed using a four-cylinder naturally aspirated engine fitted with an external supercharger and a butterfly valve for back pressure control to simulate a turbocharger with efficiency of 0.64. Based on the test results, the performance and emission characteristics are studied in detail through numerical one-dimensional cycle simulations. The results indicate that the thermal efficiency can be improved by raising the engine compression ratio and lowering the turbocharging pressure. At an engine compression ratio of 21 and turbocharging pressure of 1.9 bar, the brake thermal efficiency reaches 0.43, with NOx emissions of only 10 ppm or less.
Technical Paper

Study on Auto-Ignition and Combustion Mechanism of HCCI Engine

2004-09-27
2004-32-0095
In the HCCI (Homogeneous Charge Compression Ignition) engine, a mixture of fuel and air is supplied to the cylinder and auto-ignition occurs resulting from compression. This method can expand the lean flammability limit, realizing smokeless combustion and also having the potential for realizing low NOx and high efficiency. The optimal ignition timing is necessary in order to keep high thermal efficiency. The Ignition in the HCCI engine largely depends on the chemical reaction between the fuel and the oxidizer. Physical methods in conventional engines cannot control it, so a chemical method is demanded. Combustion duration is maintained properly to avoid knocking. In addition, the amount of HC and CO emissions must be reduced. The objective of this study is to clarify the following through calculations with detailed chemical reactions and through experiment with the 2-stroke HCCI engine: the chemical reaction mechanism, and HC and CO emission mechanisms.
Technical Paper

Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement

2004-06-08
2004-01-1902
In the HCCI Engine, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically, and has the possibility of affecting the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Two-dimensional images of the chemiluminescence were captured by using a framing camera with an optically accessible engine in order to understand the spatial distribution of the combustion. DME was used as a test fuel. By changing a device for mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition.
Technical Paper

Combustion Analysis of Natural Gas in a Four Stroke HCCI Engine Using Experiment and Elementary Reactions Calculation

2003-03-03
2003-01-1089
Homogeneous charge compression ignition (HCCI) is regarded as the next generation combustion regime in terms of high thermal efficiency and low emissions. It is difficult to control autoignition and combustion because they are controlled primarily by the chemical kinetics of air/fuel mixture. In this study, it was investigated the characteristics of autoignition and combustion of natural gas in a four-stroke HCCI engine using experiment and elementary reactions calculation. The influence of equivalence ratio, intake temperature, intake pressure and engine speed on autoignition timing, autoignition temperature, combustion duration and the emissions of THC, CO, CO2 were investigated. And also, to clarify the influence of n-butane on autoignition and combustion of natural gas, it was changed the blend ratio of n-butane from 0 mol% to 10 mol% in methane / n-butane / air mixtures.
Technical Paper

Effects of Aromatics Content and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation

2001-05-07
2001-01-1940
In this study, the effects of fuel properties, aromatics content and 90% distillation temperature T90, on flame temperature and soot formation were studied using a rapid compression machine (RCM). Aromatics content and T90 distillation temperature were parameters isolated from influence of each other, and from cetane number. A fuel spray was injected in the RCM combustion chamber by a single nozzle hole. The ignition and combustion processes of diesel spray were observed by a high-speed direct photography. Flame temperature and KL factor (which indicates the soot concentration), were analyzed by the two-color method. The rate of heat release was analyzed from indicated diagrams. The fuels with aromatics content showed higher flame temperature. The fuel with highest T90 distillation temperature showed highest flame temperature.
Technical Paper

Effect of Nozzle Diameter and EGR Ratio on the Flame Temperature and Soot Formation for Various Fuels

2001-05-07
2001-01-1939
In this study, effects of nozzle hole diameter and EGR ratio on flame temperature (indication of NO formation) and KL value (indication of soot formation) were investigated. Combustion of a single diesel fuel spray in the cylinder of a rapid compression machine (RCM) was analyzed. Three nozzles with different hole diameter were used corresponding to present, near term and long term heavy duty diesel engine specifications. EGR was simulated through 2%vol. CO2 addition to the inlet air and by increase of in-cylinder surrounding gas temperature. Various types of fuels were used in this. The ignition and combustion processes of diesel fuel spray were observed by a high-speed direct photography and by indicated pressure diagrams. Flame temperature and KL factor were analyzed by a two-color method. With larger nozzle hole diameters there are larger high temperature areas. With smaller nozzle hole diameters there is more soot formed. Introduction of 2% vol.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

2000-06-19
2000-01-1815
Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.
Technical Paper

Two–Dimensional Imaging of Formaldehyde Formed During the Ignition Process of a Diesel Fuel Spray

2000-03-06
2000-01-0236
The time of, and location where ignition first occurs in a diesel fuel spray were investigated in a rapid compression machine (RCM) using the two–dimensional techniques of silicone oil particle scattering imaging (SSI), and the planar laser induced fluorescence (LIF) of formaldehyde. Formaldehyde has been hypothesized to be one of the stable intermediate species marking the start of oxidation reactions in a transient spray under compression ignition conditions. In this study, the LIF images of the formaldehyde formed in a diesel fuel spray during ignition process have been successfully obtained for the first time by exciting formaldehyde with the 3rd harmonic of the Nd:YAG laser. SSI images of the vaporizing spray, and the LIF images of formaldehyde were obtained together with the corresponding time record of combustion chamber pressures at initial ambient temperatures ranging from 580 K to 790 K.
X