Refine Your Search

Topic

Search Results

Technical Paper

Influence of ethanol blending on knocking in a lean burn SI engine

2019-12-19
2019-01-2152
Lean burn is one method for improving thermal efficiency in spark ignition (SI) engines. Suppression of knocking provides higher thermal efficiency, and ethanol blending is considered an effective way to suppress knocking due to its high octane and high latent heat of evaporation. We investigate the effect of ethanol blending on knocking in an SI engine under lean operating conditions. The Livengood-Wu (LW) integral was performed based on ignition delay duration estimated from a zero-dimensional detailed chemical reaction calculation with pressure and temperature histories. Knocking was suppressed and thermal efficiency increased with ethanol-gasoline blending fuel, even at 0.5 equivalence ratio. Decrease in unburned gas temperature by latent heat of evaporation had a comparable influence on knocking suppression, which was supported by LW integral analysis.
Technical Paper

Effect of Temperature-Pressure Time History on Auto-Ignition Delay of Air-Fuel Mixture

2018-09-10
2018-01-1799
When the compression ratio of the spark ignition engine is set high as a method of improving the fuel efficiency of passenger cars, it is often combined with the direct fuel injection system for knock mitigation. In port injection, there are also situations where the fuel is guided into the cylinder while the vaporization is insufficient, especially at the cold start. If the fuel is introduced into the cylinder in a liquid state, the temperature in the cylinder will change due to sensible heat and latent heat of the fuel during vaporization. Further, if the fuel is unevenly distributed in the cylinder, the effect of the specific heat is added, and the local temperature difference is expanded through the compression process. In this research, an experiment was conducted using a rapid compression machine for the purpose of discussing the effect of the temperature-pressure time history of fuel on ignition delay time.
Technical Paper

The Effect of Fuel Composition on Ignition Delay and Knocking in Lean Burn SI Engine

2017-11-05
2017-32-0112
Super lean burn technology is conceived as one of methods for improving the thermal efficiency of SI engines[1][2]. For lean burn, reduction of heat loss and the due to decrease in flame temperature can be expected. However, as the premixed gas dilutes, the combustion speed decreases, so the combustion fluctuation between cycles increases. Also, to improve the thermal efficiency, the ignition timing is advanced to advance the combustion phase. However, when the combustion phase is excessively advanced, knocking occurs, which hinders the improvement of thermal efficiency. Knocking is a phenomenon in which unburned gas in a combustion chamber compressed by a piston and combustion gas suffer compression auto-ignition. It is necessary to avoid knocking because the amplitude of the large pressure wave may cause noise and damage to the engine. Also, knocking is not a steady phenomenon but a phenomenon that fluctuates from cycle to cycle.
Technical Paper

Investigation of Cycle-to-Cycle Variation of Turbulent Flow in a High-Tumble SI Engine

2017-10-08
2017-01-2210
The thermal efficiency of a spark-ignition (SI) engine must be improved to reduce both environmental load and fuel consumption. Although lean SI engine operation can strongly improve thermal efficiency relative to that of stoichiometric SI operation, the cycle-to-cycle variation (CCV) of combustion increases with the air dilution level. Combustion CCV is caused by CCVs of many factors, such as EGR, spark energy, air-fuel ratio, and in-cylinder flow structure related to engine speed. This study focuses on flow structures, especially the influence of a tumble structure on flow fluctuation intensity near ignition timing. We measured the flow field at the vertical center cross section of an optically accessible high-tumble flow engine using time-resolved particle image velocimetry. There are many factors considered to be sources of CCV, we analyzed three factors: the intake jet distribution, distribution of vortex core position and trajectory of the fluid particle near the spark plug.
Technical Paper

Effect of Heat Release Pattern of Flame during Propagation on Auto-Ignition Process of End-Gas

2016-04-05
2016-01-0701
Knock is a factor hindering enhancement of the thermal efficiency of spark ignition engines, and is an unsteady phenomenon that does not necessarily occur each cycle. In addition, the heat release history of the flame also fluctuates from cycle to cycle, and the auto-ignition process of the unburned mixture (end-gas), compressed by the global increase in pressure due to release of chemical energy, is affected by this fluctuation. Regarding auto-ignition of the end-gas, which can be the origin of knock, this study focused on the fluctuation of the flame heat release pattern, and used a zero-dimensional (0D) detailed chemical reaction calculation in an attempt to analyze and examine the consequence on the end-gas compression and auto-ignition process of changes in the i) start of combustion, ii) combustion duration and iii) center of heat release of the flame.
Technical Paper

An Investigation of the Effects of Fuel Concentration Inhomogeneity on HCCI Combustion -Fuel Concentration of Pre-Mixture Using LIF measurement-

2015-09-01
2015-01-1788
HCCI (Homogeneous Charge Compression Ignition) engine has a problem which causes knocking when the maximum PRR (Pressure Rise Rate) reaches a certain level because it takes the form of combustion of simultaneous multi-point ignition by compression of the air-fuel pre-mixture. This study focused on stratified charge of fuel in combustion chamber. This method disperses the timing of local ignition. The distribution of fuel concentration is measured by using LIF (Laser Induced Fluorescence). As a result, the maximum PRR is reduced by stratified charge of fuel. In addition, it is confirmed that the dispersion of combustion timing depends on the dispersion of fuel concentration.
Technical Paper

An Investigation into Cycle-to-Cycle Variations of IMEP using External EGR and Rebreathed EGR in an HCCI Engine, Based on Experimental and Single-Zone Modeling

2015-09-01
2015-01-1805
The characteristics of cycle-to-cycle variations of indicated mean effective pressure (IMEP) with combustion-phasing retard have been investigated experimentally and computationally in an homogeneous charge compression ignition (HCCI) engine using dimethyl ether (DME). The experiments were conducted in a single-cylinder HCCI research engine equipped with an exhaust gas recirculation (EGR) passage for external EGR and a two-stage exhaust cam for rebreathed EGR. To understand the chemical effects of rebreathed EGR, which is assumed to contribute to the autoignition enhancement, the computations were performed with a single-zone model of CHEMKIN using a chemical-kinetic mechanism developed by combining DME mechanism and NOx submechanism.
Technical Paper

Analysis for Influence of Inhomogeneity of Air-Fuel Mixture to Super-Knock Caused by Pre-ignition in Supercharged Direct-Injected SI Engine Based on Numerical Calculation

2015-09-01
2015-01-1866
Nowadays, highly super charging is required corresponded to downsizing concept for improving thermal efficiency in direct-injected spark ignition (DISI) engine. However, highly super charging increases the possibility of super-knock caused by pre-ignition. Recently, in many studies, the reason of pre-ignition has been investigated but the reason why pre-ignition leads such strong knocking called super-knock has not been investigated. In DISI engine, it is estimated that there is more inhomogeneity of equivalence ratio and temperature of air-fuel mixture than it in port injection SI engine. In this study, factors which decide self-ignition timing was reviewed and the influence of inhomogeneity of air-fuel mixture to super-knock was investigated based on numerical calculation.
Technical Paper

Numerical Investigation of a Potential of Dedicated EGR System for Increasing Thermal Efficiency of SI Engines Fueled with Methane and Propane

2015-09-01
2015-01-1883
This study tried to find a potential of dedicated EGR (d-EGR) system added to the four-cylinder spark ignition (SI) engine to decrease heat loss (Qheatloss) and improve thermal efficiency (ηth). Test fuels were chosen by methane and propane. PREMIX code in CHEMKIN-PRO was employed to calculate laminar burning velocity (SL) and flame temperature (Tf). Wiebe function and Wocshni's heat transfer coefficient were considered to calculate ηth. The results show that the d-EGR system increased ηth and it was higher than that of stoichiometric combustion of conventional SI engines due to the low Tf and fast SL.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

2014-11-11
2014-32-0108
Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Technical Paper

An Investigation on the Auto-Ignition of Fuel-Air Mixture Induced by Release of Oil-Fuel Droplets from Cylinder-Liner Using Multi-Zone Model

2014-11-11
2014-32-0094
This study investigated effects of gas inhomogeneity induced by droplets of fuels and oils on the auto ignition timing and temperature in the direct-injection spark ignition (DISI) engine by means of detailed numerical calculation using multi zone model. Recent researchers pointed out that droplets are made of fuels and oils which mix on the cylinder liner and released from the cylinder liner [1]. During the compression stroke released droplets reach the auto ignition temperature before flame propagation induced by spark ignition. It is called Pre-ignition. In combustion chamber, there is inhomogeneity caused by temperature and mixture distribution. In this study, the effects of gas inhomogeneity produced by droplet on the auto ignition timing and temperature have been investigated using Multi-Zone model of CHEMKIN-PRO by changing initial temperature and initial equivalence ratio. Especially, the volume of first ignition zone is focused on.
Journal Article

A Computational Study of the Effects of EGR and Intake-Pressure Boost on DME Autoignition Characteristics over Wide Ranges of Engine Speed

2014-04-01
2014-01-1461
This study has been computationally investigated how the DME autoignition reactivity is affected by EGR and intake-pressure boost over various engine speed. CHEMKIN-PRO was used as a solver and chemical-kinetics mechanism for DME was utilized from Curran's model. We examined first the influence of EGR addition on autoignition reactivity using contribution matrix. Investigations concentrate on the HCCI combustion of DME at wide ranges of engine speeds and intake-pressure boost with EGR rates and their effects on variations of autoignition timings, combustion durations in two-stage combustion process in-detail including reaction rates of dominant reactions involved in autoignition process. The results show that EGR addition increases the combustion duration by lowering reaction rates.
Journal Article

Closed-Loop Combustion Control of a HCCI Engine with Re-Breathing EGR System

2013-10-15
2013-32-9069
This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles.
Technical Paper

The Research about Engine Optimization and Emission Characteristic of Dual Fuel Engine Fueled with Natural Gas and Diesel

2012-10-23
2012-32-0008
CNG/diesel dual-fuel engine is using CNG as a main fuel, and injects diesel only a little as an ignition priming. In this study, remodeling an existing diesel engine into dual-fuel engine that can inject diesel with high pressure by CRDI (Common Rail Direct Injection), and injecting CNG at intake port for premixing. The results show that CNG/diesel dual-fuel engine satisfied coordinate torque and power with conventional diesel engine. And CNG alternation rate is over 89% in all operating ranges of CNG/diesel dual-fuel engine. PM emission is lower 94% than diesel engine, but NOx emission is higher than diesel engine. The output of dual fuel mode is 95% by the diesel mode. At this time, amount of CO₂ and PM are decreased while CO, NOx, and THC are increased. In NEDC mode, exhaust gases except NOx are decreased.
Technical Paper

An Investigation on DME HCCI Engine about Combustion Phase Control using EGR Stratification by Numerical Analysis

2012-10-23
2012-32-0077
This work has been investigated the potential of in-cylinder EGR stratification for reducing the pressure rise rate of DME HCCI engines, and the coupling of both thermal stratification and fuel stratification. The numerical analyses were done by using five-zone version of CHEMKIN-II kinetics rate code, and kinetic mechanics for DME. The effects of inert components were used for the presence of EGR in calculation. Three cases of EGR stratification were tested on both thermal stratification and fuel stratification at the fixed initial temperature, pressure and fueling rate at BDC. In order to explore the appropriate stratification of EGR, EGR width was employed from zero to thirty percent. Firstly, EGR homogeneity case which means EGR width zero was examined. Secondly, EGR is located densely in hotter zone for combining with thermal stratification or in richer zone for a combination with fuel stratification. Lastly, the case was judged inversely with the second case.
Technical Paper

Influence of Pilot Injection on Combustion Characteristics and Emissions in a DI Diesel Engine Fueled with Diesel and DME

2011-08-30
2011-01-1958
This work experimentally investigates how the dwell time between pilot injection and main injection influences combustion characteristics and emissions (NOx, CO, THC and Smoke) in a single-cylinder DI diesel engine. Additionally, results from diesel injection are compared with those shown in dimethyl ether (DME) injection under the identical injection strategy to demonstrate the sensitivity of the combustion characteristics and emissions to changes of the fuel type. Two fuel injection systems are applied for this experiment due to the differences of fuel characteristic with regard to physical and chemical properties. The injection strategy is accomplished by varying the dwell time (10°CA, 16°CA and 22°CA) between injections at five main injection timings (-4°CA aTDC, -2°CA aTDC, TDC, 2°CA aTDC and 4°CA aTDC). It was found that pilot injection offers good potential to lower the heat-release rate with reduced pressure traces regardless of the dwell time between injections and fuel type.
Technical Paper

Analysis of the Effect of Eco-driving with Early Shift-up on Real-world Emission

2010-10-25
2010-01-2279
For the reduction of greenhouse gas emission in the transportation sector, various countermeasures against CO₂ emission have been taken. The eco-driving has been paid attention because of its immediate effect on the CO₂ reduction. Eco-driving is defined as a driving method with various driving techniques to save fuel economy. The eco-driving method has been promoted to the common drivers as well as the drivers of carriers. Additionally, there are many researches about improvement of fuel efficiency and CO₂ reduction. However, the eco-driving will have the reduction effect of CO₂ emission, the influence of the eco-driving on air pollutant emission such as NOx is not yet clear. In this study, the effect of the eco-driving on real-world emission has been analyzed using the diesel freight vehicle with the on-board measurement system.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Technical Paper

Analysis of the combustion dispersion mechanism in HCCI Engine

2009-11-03
2009-32-0086
Delaying CA50(Crank Angle of 50% Heat Release) of the HCCI engine to expansion stroke can lead to high indicated thermal efficiency as well as the avoidance of knocking. However, this method could induce the problem of cycle variability. In this study, the cycle-to-cycle variation of a HCCI engine fueled with DME was investigated. Experimental parameters of each cycle, such as in-cylinder temperature, pressure and gas flow rate, were recorded by fast response system, and analyzed consequently. Moreover, the interdependency between the combustion and the performance parameters were evaluated.
Technical Paper

The Research about Thermal Stratification Effect on Pressure Rise Rate in Supercharged HCCI Engine based on Numerical Analysis

2009-11-03
2009-32-0141
The HCCI engine is a next generation engine, with high efficiency and low emissions. However a rate of pressure rise is a major limitation for high load range. Recently, we are able to reduce the rate of pressure rise using thermal stratification. Nevertheless, this was insufficient to produce high power. Without the higher equivalent ratio, one way to improve the power is to increase the intake boost pressure. It is suggested that the rate of pressure rise is reduced by thermal stratification and the power is increased by boost pressure at the same time. The objective of this work is to understand the characteristics of combustion, knock and emissions for using both thermal stratification and the boost pressure. The calculations are performed by CHEMKIN and modified SENKIN. As a result of increasing the boost pressure, a higher IMEP was attained while the rate of pressure rise increased only slightly in the HCCI with thermal stratification.
X