Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

MMLV: Crash Safety Performance

2015-04-14
2015-01-1614
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy (DOE) project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while achieving frontal crash test performance comparable to the baseline vehicle. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364 kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0 liter three-cylinder engine, leading to the potential for reduced environmental impact and improved fuel economy.
Technical Paper

Frontal Impact Responsesof Generic Steel Front Bumper Crush Can Assemblies

2014-04-01
2014-01-0550
The present investigation details an experimental procedure for frontal impact responses of a generic steel front bumper crush can (FBCC) assembly subjected to a rigid full and 40% offset impact. There is a paucity of studies focusing on component level tests with FBCCs, and of those, speeds carried out are of slower velocities. Predominant studies in literature pertain to full vehicle testing. Component level studies have importance as vehicles aim to decrease weight. As materials, such as carbon fiber or aluminum, are applied to vehicle structures, computer aided models are required to evaluate performance. A novel component level test procedure is valuable to aid in CAE correlation. All the tests were conducted using a sled-on-sled testing method. Several high-speed cameras, an IR (Infrared) thermal camera, and a number of accelerometers were utilized to study impact performance of the FBCC samples.
Technical Paper

Extruded Aluminum Crash Can Topology for Maximizing Specific Energy Absorption

2008-04-14
2008-01-1500
Specific energy absorption (SEA) is a quantitative measure of the efficiency of a structural member in absorbing impact energy. For an extruded aluminum crash can, SEA generally depends upon the topology of its cross-section. An investigation is carried out to determine the optimal cross-sectional topologies for maximizing SEA while considering manufacturing constrains such as, permissible die radii, gauges, etc. A comprehensive DOE type matrix of cross-sectional topologies has been developed by considering a wide variety of practical shapes and configurations. Since it is critical to include all feasible topologies, much thought and care has been given in developing this matrix. Detailed finite element crash analyses are carried out to simulate axial crushing of the selected crash cans topologies and the resulting specific energy absorption (SEA) is estimated for each case.
Technical Paper

Modeling of Spot Weld under Impact Loading and Its Effect on Crash Simulation

2006-04-03
2006-01-0959
Spot weld is the primary joining method to assemble the automotive body structure. In any crash events some separation of spot-welds can be expected. However, if this happens in critical areas of the vehicle it can potentially affect the integrity of the structure. It will be beneficial to identify such issues through CAE simulation before prototypes are built and tested. This paper reports a spot weld modeling methodology to characterize spot weld separation and its application in full vehicle crash simulation. A generalized two-node spring element with 6 DOF at each node is used to model the spot weld. Separation of spot welds is modeled using three alternative rupture criteria defined in terms of peak force, displacement and energy. Component level crash tests are conducted using VIA sled at various impact speeds to determine mean crush load and identify possible separation of welds.
Technical Paper

Adhesive Modeling in Crash Simulation

2006-04-03
2006-01-0955
A practical modeling methodology for adhesively bonded structures using discrete springs has been developed for crash simulation. As a first step, a series of coupon tests with adhesively bonded substrates have been conducted under tension, peel and shearing. Both deformable and rigid substrates have been used in these tests. The resulting data has been used to determine the properties of the adhesive springs. A set of numerical simulations of the coupon tests have been conducted to verify that the adhesive spring properties derived earlier do indeed represent the mechanical properties of the physical adhesives in the coupon tests.
Technical Paper

Finite Element Modeling of Spot Weld Connections In Crash Applications

2004-03-08
2004-01-0691
Spot welding is the primary joining method used for the construction of the automotive body structure made of steel. A major challenge in the crash simulation today is the lack of a simple yet reliable modeling approach to characterize spot weld separation. In this paper, an attempt has been made to develop a spot weld modeling methodology to characterize spot weld separation in crash simulation. A generalized two-node spring element with 6 DOF at each node is used to characterize the spot weld nugget. To represent the connection of the nugget with the surrounding plates, tied contacts are defined between the spring element nodes and the shell elements of the plate. Three general separation criteria are proposed for the spot weld that include the effects of speed and coupled loading conditions. The separation criteria are implemented into a commercially available explicit finite element code.
Technical Paper

Determination of Spot Weld Modeling Parameters from Test Data for Finite Element Crash Simulation

2004-03-08
2004-01-0692
The authors have proposed a new formulation to characterize the mechanical properties of spot welds under dynamic loadings including separation. In this paper, the authors primarily discuss a systematic procedure to determine the parameters of the proposed spot weld model from test data using a Design of Experiment (DOE) approach and statistical analyses. All analysis pertaining to the spot weld modeling under impact loading has been performed using RADIOSS, a commercially available explicit FE crash solver. In this study, the spot weld connection was modeled using a two-node beam-type spring element with 6 DOF at each node, and the sheet metal was modeled using a four-node shell element. The main objective was to develop a spot weld modeling methodology that is accurate and robust enough to be used in a full vehicle model which is composed of hundreds of different parts and will be crashed under different test conditions.
Technical Paper

An Investigation of Spot-Welded Steel Connections Using a DOE Approach

2003-03-03
2003-01-0612
This paper presents an investigation into the behavior of spot-welded steel connections based on a DOE approach. This work is a part of spot-weld modeling methodology development work being performed at Ford. Control factors such as material, coating, gage size, and noise factors such as loading direction (angle), and speed are considered in this study. Different levels of each variable are included to cover a wide range of practical applications. The test methodology used to generate the responses for the spot-weld coupons have been discussed in a companion paper [1]. From the force-displacement curves obtained from the test, the responses such as peak force, displacement at peak force, and rupture displacement are identified. These responses are then statistically analyzed to identify the relative importance and effect of the design factors. Finally, response surface models are developed to determine responses across different levels of each variable.
Technical Paper

Dynamic Testing and CAE Modeling of Body Mount An Application in the Frontal Impact Analysis of a Body-on-Frame Vehicle

2003-03-03
2003-01-0256
This study is a systematic investigation of the body mounts' dynamic characteristics in component, sub-system and full system levels and its application in the frontal impact analysis of a body-on-frame (BOF) vehicle. Concluded from the component study, the body mount is modeled by non-linear spring with built-in damage and rupture properties. The sub-system study reveals the importance of modeling the interaction between the body mount and its surrounding structure. A general-purpose interaction modeling is developed to provide a realistic CAE simulation of this interaction behavior. The full system is mainly for methodology validation. Four 90-degree frontal and the one IIHS offset frontal crash tests are used to evaluate the performance of the body mount in low and high speeds and its capability of predicting the body mount and the floor pan failures.
Technical Paper

Methodology for Testing of Spot-Welded Steel Connections Under Static and Impact Loadings

2003-03-03
2003-01-0608
Spot-welds are the primary joining methods for steel sheet metals used in the manufacturing of automobile body structure. Often the impact responses are significantly affected by the characteristic properties, such as stiffness, failure strength, etc of spot-welds. In view of this, understanding the behavior and the properties of spot-welds under static and impact loadings are critical for accurate CAE analysis of vehicle impact events. To this end, a comprehensive DOE based spot-weld testing has been undertaken by considering a wide variety of variables. The test data thus obtained were analyzed to determine the requisite mechanical properties of spot-welds as a function of the key variables such as gage, yield strengths, speed, etc. Spot-weld connections have been tested for gages ranging from 0.7 to 3.0 mm using a unique specimen configuration developed at Ford.
Technical Paper

Dynamic Testing and CAE Modeling of Engine Mounts and their Application in Vehicle Crash Analysis

2003-03-03
2003-01-0257
This study summarizes the latest development of the methodologies for testing and CAE modeling of the engine mount. A systematic approach is used in this study with detailed component, subsystem and full system level investigations. The component level study reveals the entangling phenomenon of the inertial and rate effects in the engine mount dynamic characteristics. In the subsystem, the interaction between the engine mount and its surrounding structure is explored. The full system study is primarily used to validate the CAE methodology for engine mounts developed in the component and subsystem level studies. Four full vehicle barrier crash tests, with different crash modes and speeds, are employed in this validation phase to evaluate the performance of the engine mount CAE methodology.
Technical Paper

Development of a Target Vehicle Model For Vehicle-To-Vehicle Simulations: Part II Vehicle-To-Vehicle Impactsy

2002-03-04
2002-01-0248
The objective of this study is to verify the performance of a target vehicle model in vehicle-to-vehicle impact applications. In some vehicle-to-vehicle tests, the target vehicle stays the same and the bullet vehicle changes from test to test depending on the programs under evaluation. To obtain reasonable crash pulse predictions in vehicle-to-vehicle impacts, it was decided to develop an accurate and robust target vehicle model first. The development of the target vehicle model was divided into two phases, rigid barrier and vehicle-to-vehicle impacts. Twelve rigid barrier tests, including full rigid barriers, angular rigid barriers, offset rigid barriers, and fixed rigid poles were adopted in the first phase of the study to calibrate the target vehicle model. The results of the study have been reported [1]. This paper focuses on the verification of vehicle-to-vehicle impacts.
Technical Paper

Development of a Target Vehicle Model for Vehicle-to-Vehicle Simulations: Part I Rigid Barrier Impacts

2002-03-04
2002-01-0246
The objective of this study is to develop a target vehicle model for vehicle-to-vehicle impact applications. In order to provide reasonable predictions for crash pulses in vehicle-to-vehicle impacts, an accurate and robust target vehicle model was developed first. An ideal target vehicle model should be able to provide reasonable results when hit by different bullet vehicles at different impact speeds and under different impact conditions. This was achieved by calibrating the target vehicle model against different vehicle crash tests, which include full rigid barriers, angular rigid barriers, offset rigid barriers, and fixed rigid poles. Twelve rigid barrier tests were adopted in this study to calibrate the target vehicle model. During the calibration process, some of the vehicle structures were examined and remodeled carefully for their properties and mesh quality.
Technical Paper

Methodology On The Testing Of The Automobile Mount Dynamic Response

2001-03-05
2001-01-0474
This paper reports the latest development of methodologies for testing and CAE modeling of the automobile mounts. The objective of this study is to provide dynamic mount properties for product evaluation and CAE modeling guideline for crashworthiness simulations. The methodology is divided into component, subsystem and full system levels. The study at the component level is to extract the dynamic parameters of mounts, such as stiffness and damping coefficient, based on the component tests. Furthermore, such parameters are employed to investigate the interaction between mount and connecting structures at the subsystem level. A robust connection mechanism from mount to surrounding structures is also developed during this process. Finally, the results from full vehicle system tests are compared with the CAE simulations to verify the methodology at the component and subsystem levels. A robust component test methodology is the first key element of this study.
Technical Paper

Development of a Target Vehicle Model for Vehicle-to-Vehicle Frontal Compatibility Applications

2001-03-05
2001-01-1055
An accurate and robust target vehicle model was developed for vehicle compatibility applications. Although vehicle compatibility simulation involves a bullet vehicle hitting a target vehicle, the focus of this paper is to develop a target vehicle model. To ensure the robustness, the target vehicle model needs to provide reasonable responses under different impact conditions. This can be achieved by calibrating the model against different physical tests. Significant effort was taken to improve the accuracy of the target vehicle model. In the calibration process, some components were found to have significant effects on the global responses. These components play different roles in different crash modes. To improve the overall correlation with test, different component tests were also designed and conducted to understand the characteristics and improve the modeling of these critical components.
Technical Paper

Strain-Rate Characterization of Automotive Steel and the Effect of Strain-Rate in Component Crush Analysis

1998-09-29
982392
The effects of strain-rate and element mesh size on the numerical simulation of an automotive component impacted by a mass dropped from an instrumented drop tower was investigated. For this study, an analysis of a simple steel rail hat-section impacted by a mass moving at an initial velocity of 28Mph was performed using the explicit finite element code Radioss. Three constitutive material models: Elasto-Plastic (without strain rate), Johnson-Cook, and Zerilli-Armstrong were used to characterize the material properties for mild and high strength steel. Results obtained from the numerical analyses were compared to the experimental data for the maximum crush, final deformation shape, average crush force and the force-deflection curve. The results from this study indicate that the mechanical response of steel can be captured utilizing a constitutive material model which accounts for strain rate effect coupled with an average mesh size of 6 to 9mm.
Technical Paper

Strain Rate Dependent Foam - Constituitive Modeling and Applications

1997-02-24
971076
Many foams exhibit significant strain rate dependency in their mechanical responses. To characterize these foams, a strain rate dependent constitutive model is formulated and implemented in an explicit dynamic finite element code developed at FORD. The constitutive model is developed in conjunction with a Lagrangian eight node solid element with twenty four degrees of freedom. The constitutive model has been used to model foams in a number crash analysis problems. Results obtained from the analyses are compared to the experimental data. Evidently, numerical results show excellent agreement with the experimental data.
X