Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

2014-04-01
2014-01-1906
Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Technical Paper

Real-Time On-Board Indirect Light-Off Temperature Estimation as a Detection Technique of Diesel Oxidation Catalyst Effectiveness Level

2013-04-08
2013-01-1517
The latest US emission regulations require dramatic reductions in Nitrogen Oxide (NOx) emissions from vehicular diesel engines. Selective Catalytic Reduction (SCR) is the current technology that achieves NOx reductions of up to 90%. It is typically mounted downstream of the existing after-treatment system, i.e., after the Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF). Accurate prediction of input NO₂:NO ratio is useful for control of SCR urea injection to reduce NOx output and NH₃ slippage downstream of the SCR catalyst. Most oxidation of NO to NO₂ occurs in the DOC since its main function is to oxidize emission constituents. The DOC thus determines the NO₂:NO ratio as feedgas to the SCR catalyst. The prediction of NO₂:NO ratio varies as the catalyst in the DOC ages or deteriorates due to poisoning. Thus, the DOC prediction model has to take into account the correlation of DOC conversion effectiveness and the aging of the catalyst.
Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Designing a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle

2012-09-10
2012-01-1763
The Purdue University EcoMakers team has completed its first year of the EcoCAR 2 Competition, in which the team has designed a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle that meets the performance requirements of a mid-size sedan for the US market, maintaining capability, utility and consumer satisfaction while minimizing emissions, energy consumption and petroleum use. The team is utilizing a 1.7L 14 CI engine utilizing B20 (20% biodiesel, 80% diesel), a 16.2 kW-hr A123 battery pack, and a Magna E-Drive motor to power the front and rear wheels. This will allow the vehicle to have a charge-depleting range of 75 miles. The first year was focused on the simulation of the vehicle, in which the team completed the controls, packaging and integration, and electrical plans for the vehicle to be used and implemented in years two and three of the competition.
Journal Article

Degradation of Nonmethane Hydrocarbon Oxidation Efficiency of a Catalyzed Diesel Particulate Filter during Aging

2011-04-12
2011-01-1308
Upcoming 2013 on-board diagnostic (OBD) requirements mandate that catalyzed diesel particulate filter (CDPF) nonmethane hydrocarbon (NMHC) oxidation efficiency degradation be monitored as the filter ages. The malfunction indicator lamp (MIL) is to light when exhaust NMHC levels are greater than two times the legal limit or when the CDPF has no detectable amount of NMHC conversion capability. In this study, a CDPF was thermoelectrically aged at 650°C from the degreened (near-new) to end of useful life (EUL) stage. CDPF total hydrocarbon (THC) oxidation efficiency was measured periodically using a suite of steady-state speed and load conditions ("snapshot test"). The snapshot test was performed after every seven hours of filter aging. Snapshot test data of steady-state THC oxidation efficiency change across the filter at the chosen operating conditions shows no discernible, consistent degradation as the filter is aged.
Technical Paper

Vegetable Oil with Ester Base as a Two-Cycle SI Engine Lubricant

2008-06-23
2008-01-1718
The work reported here was initiated in the attempt to develop a bio-based two-cycle SI engine lubricant as an alternative to commercially available mineral based synthetics. In the first phase of the project, it was discovered that straight soy based biodiesel at any volume ratio with gasoline had insufficient lubricity to prevent engine seizure. Mixtures of synthetic with biodiesel proved to have adequate lubricity. A two-cycle lubricant was then synthesized via a trans-esterification of canola oil with hydrogen peroxide and vinegar forming canola oil based biodiesel (COBB). COBB proved to have superior lubricity to synthetic lubricant. The superior lubricity of COBB is hypothesized to be due to a saturated solution of non-reacted canola oil in the biodiesel. This hypothesis was tested using mixtures of canola oil in a solution of phenyl acetate as a two-cycle SI engine lubricant.
Technical Paper

1-D Dynamic Diesel Particulate Filter Model for Unsteady Pulsating Flow

2007-04-16
2007-01-1140
A fast time-scale 1-D dynamic diesel particulate filter model capable of resolving the pressure pulsations due to individual cylinder firing events is presented. The purpose of this model is to investigate changes in the firing frequency component of the pulsating exhaust flow at different particulate loadings. Experimental validation data and simulation results clearly show that the magnitude and phase of the firing frequency components are directly correlated to the mass of particulate stored in a diesel particulate filter. This dynamic pressure signal information may prove particularly useful for monitoring particulate load during vehicle operation.
Technical Paper

Correlating Dynamic Pressure Signal Features to Diesel Particulate Filter Load

2007-04-16
2007-01-0333
The firing frequency components of the dynamic diesel particulate filter pressure signals carry significant information about the particulate load. Specifically, the normalized magnitude and relative phase of the firing frequency components exhibit clear dependence on the particulate load in a filter. Further, the test-to-test variation and back-to-back repeatability in this work was better for the dynamic pressure signal features than for the mean value pressure drop. This work provides a promising extension or alternative to the mean value pressure drop correlation to particulate load through Darcy's Law. The results may be particularly useful for filter monitoring and control.
X