Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Optimal Use of Boosting Configurations and Valve Strategies for High Load HCCI - A Modeling Study

2012-04-16
2012-01-1101
This study investigates a novel approach towards boosted HCCI operation, which makes use of all engine system components in order to maximize overall efficiency. Four-cylinder boosted HCCI engines have been modeled employing valve strategies and turbomachines that enable high load operation with significant efficiency benefits. A commercially available engine simulation software, coupled to the University of Michigan HCCI combustion and heat transfer correlations, was used to model the HCCI engines with three different boosting configurations: turbocharging, variable geometry turbocharging and combined supercharging with turbocharging. The valve strategy features switching from low-lift Negative Valve Overlap (NVO) to high-lift Positive Valve Overlap (PVO) at medium loads. The new operating approach indicates that heating of the charge from external compression is more efficient than heating by residual gas retention strategies.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Journal Article

High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine

2011-04-12
2011-01-0899
Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional spark ignition engines. However, due to the nature of HCCI combustion, traditional HCCI combustion can be realized only in a limited operating range. In order to maximize fuel economy benefits the HCCI operating range needs to be extended to higher loads. One immediate benefit is to maximize the portion of the standard driving cycles (NEDC, FTP, etc.) that can be run with HCCI combustion, so that transitions between SI operation and HCCI operation can be avoided. The HCCI operation at high load range is typically limited by a trade-off between combustion noise and combustion stability. In a previous research, we showed how to improve this trade-off using spark-assisted HCCI combustion strategy, and concluded that the HCCI high load operation is limited by the air availability due to a low lift cam when spark-assisted HCCI combustion was applied.
Technical Paper

Experimental Study of NOx Reduction by Passive Ammonia-SCR for Stoichiometric SIDI Engines

2011-04-12
2011-01-0307
As vehicle fuel economy requirements continue to increase it is becoming more challenging and expensive to simultaneously improve fuel consumption and meet emissions regulations. The Passive Ammonia SCR System (PASS) is a novel aftertreatment concept which has the potential to address NOx emissions with application to both lean SI and stoichiometric SI engines. PASS relies on an underfloor (U/F) SCR for storage of ammonia which is generated by the close-coupled (CC) TWCs. For lean SI engines, it is required to operate with occasional rich pulses in order to generate the ammonia, while for stoichiometric application ammonia is passively generated through the toggling of air/fuel ratio. PASS serves as an efficient and cost-effective enhancement to standard aftertreatment systems. For this study, the PASS concept was demonstrated first using lab reactor results which highlight the oxygen tolerance and temperature requirements of the SCR.
Journal Article

Extending the High Load Operating Limit of a Naturally-Aspirated Gasoline HCCI Combustion Engine

2010-04-12
2010-01-0847
Homogenous Charge Compression Ignition (HCCI) combustion offers efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI, traditional HCCI combustion can be realized only in a limited operating range. The HCCI operation at high load is limited by excessive combustion noise. In order to maximize the fuel economy benefits of HCCI its operating range needs to be extended to higher loads. In particular, one immediate benefit of an increased load range on the NEDC driving cycle is the avoidance of transitions between SI operation and HCCI operation. In this research a detailed investigation of the fundamental reasons for high combustion noise was performed. Spark-assisted HCCI combustion was found to be a key factor to reduce combustion noise at high load condition.
Journal Article

Passive Ammonia SCR System for Lean-burn SIDI Engines

2010-04-12
2010-01-0366
Lean-burn Spark Ignition Direct Injection (SIDI) engines offer potential fuel economy savings, however, lack of cost-effective lean NOx aftertreatment systems has hindered its broad application. Lean NO Trap (LNT) and Urea Selective Catalytic Reduction (SCR) technologies have been widely investigated as possible solutions, but they both have considerable drawbacks. LNT catalysts suffer from high Platinum Group Metals (PGM) cost, poor thermal durability, sulfur poisoning and active SO regeneration requirements. Urea SCR systems require a secondary fluid tank with an injection system, resulting in added system cost and complexity. Other concerns for urea SCR include potential freezing of the urea solution and the need for customers to periodically fill the urea reservoir. In this paper we report a low-cost, high efficiency concept that has the potential to be a key enabler for lean-burn gasoline engines.
Journal Article

Comparison of Different Boosting Strategies for Homogeneous Charge Compression Ignition Engines - A Modeling Study

2010-04-12
2010-01-0571
Boosted Homogeneous Charge Compression Ignition (HCCI) has been modeled and has demonstrated the potential to extend the engine's upper load limit. A commercially available engine simulation software (GT-PowerÖ) coupled to the University of Michigan HCCI combustion and heat transfer correlations was used to model a 4-cylinder boosted HCCI engine with three different boosting configurations: turbocharging, supercharging and series turbocharging. The scope of this study is to identify the best boosting approach in order to extend the HCCI engine's operating range. The results of this study are consistent with the literature: Boosting helps increase the HCCI upper load limit, but matching of turbochargers is a problem. In addition, the low exhaust gas enthalpy resulting from HCCI combustion leads to high pressures in the exhaust manifold increasing pumping work. The series turbocharging strategy appears to provide the largest load range extension.
Technical Paper

Development of Robust Gasoline HCCI Idle Operation Using Multiple Injection and Multiple Ignition (MIMI) Strategy

2009-04-20
2009-01-0499
Engines operating in Homogeneous Charge Compression Ignition (HCCI) combustion mode offer significant benefits of high fuel economy and low engine-out NOx emissions over the conventional spark ignition (SI) combustion mode. However, due to the nature of HCCI combustion, traditional HCCI combustion can be realized only in a limited operating range. High load is limited by the trade-off between ringing (combustion noise) and stability (COV of IMEP). Low load is restricted by the trade-off between NOx emissions and combustion stability (standard deviation of IMEP). The present research is focused on the extension of lo w load limit of HCCI combustion by developing HCCI idle operation. The main obstacle in developing HCCI idle combustion is lack of available thermal energy necessary for successful auto-ignition.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Journal Article

Enhancing Light Load HCCI Combustion in a Direct Injection Gasoline Engine by Fuel Reforming During Recompression

2009-04-20
2009-01-0923
Homogeneous charge compression ignition (HCCI) engines have the potential for high fuel efficiency and low NOx emissions. The major disadvantage of HCCI remains the narrow operating range. One way to extend the operating range of HCCI combustion to lower load is to inject part of the total fuel mass into the hot gas during recompression. With even lower engine load, part of the fuel can also be injected late in the main compression and ignited by a spark. The propagating flame further compresses the remaining fuel-air mixture until auto-ignition occurs (spark-assisted HCCI). In this study we investigated the effect of fuel reforming and spark assist in a gasoline engine with direct fuel injection and negative valve overlap. We performed experiments with different injection quantities and varying injection timings during recompression.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux

2004-10-25
2004-01-2996
An experimental study has been carried out to provide qualitative and quantitative insight into gas to wall heat transfer in a gasoline fueled Homogeneous Charge Compression Ignition (HCCI) engine. Fast response thermocouples are embedded in the piston top and cylinder head surface to measure instantaneous wall temperature and heat flux. Heat flux measurements obtained at multiple locations show small spatial variations, thus confirming relative uniformity of in-cylinder conditions in a HCCI engine operating with premixed charge. Consequently, the spatially-averaged heat flux represents well the global heat transfer from the gas to the combustion chamber walls in the premixed HCCI engine, as confirmed through the gross heat release analysis. Heat flux measurements were used for assessing several existing heat transfer correlations. One of the most popular models, the Woschni expression, was shown to be inadequate for the HCCI engine.
X