Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Technical Paper

Stochastic Set-Point Optimization for In-Cycle Closed-Loop Combustion Control Operation

2021-04-06
2021-01-0531
The constrained indicated efficiency optimization of the set-point reference for in-cycle closed-loop combustion regulators is investigated in this article. Closed-loop combustion control is able to reduce the stochastic cyclic variations of the combustion by the adjustment of multiple-injections, a pilot and main injection in this work. The set-point is determined by the demand on engine load, burned pilot mass reference and combustion timing. Two strategies were investigated, the regulation of the start of combustion (SOC) and the center of combustion (CA50). The novel approach taken in this investigation consists of including the effect of the controlled variables on the combustion dispersion, instead of using mean-value models, and solve the stochastic optimization problem. A stochastic heat release model is developed for simulation and calibrated with extensive data from a Scania D13 six-cylinder engine. A Monte Carlo approach is taken for the simulations.
Journal Article

Analysis of Fuel Properties on Combustion Characteristics in a Narrow-Throat Pre-Chamber Engine

2021-04-06
2021-01-0474
In this study, the authors investigated the effect of fuel properties on the combustion characteristics by employing methane, methanol, ethanol, and primary reference fuels (PRFs) as the main chamber fuel while using methane for the pre-chamber. Global excess air ratios (λ) from 1.6 to lean limit were tested, while 13% of total fuel energy supplied to the engine was delivered via the pre-chamber. The gaseous methane was injected into the pre-chamber at the gas exchange top-dead-center (TDC). Port fuel injection was tested with both open and closed inlet valves. The pre-chamber assembly was designed to fit into the diesel injector pocket of the base engine, which resulted in a narrow throat diameter of 3.3 mm. The combustion stability limit was set at 5% of the coefficient of variation of gross IMEP, and the knock intensity limit was set at 10 bar. GT-Power software was used to estimate the composition of pre-chamber species and was used in heat release analysis of the two chambers.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Journal Article

Computational Study of a Multiple Fuel Injector Concept under High-Load and High-EGR Conditions

2020-09-15
2020-01-2034
A new concept utilizing multiple fuel injectors was proven effective at reducing heat transfer losses by directing spray plumes further away from the combustion chamber walls. In this concept, two injectors are mounted close to the rim of the piston bowl and point in opposite directions to generate swirling in-cylinder bulk motion. Moreover, a new flat-bowl piston design was also proposed in combination with the multiple fuel injectors for even larger improvements in thermal efficiency. However, all tests were performed at low-to-medium load conditions with no significant EGR. Modern engine concepts, such as the double compression-expansion engine (DCEE), have demonstrated higher thermal efficiency when operated at high-load conditions with a large amount of EGR for NOx control. Thus, this study aims to assess the effectiveness of the multiple-fuel-injector system under such conditions. In this study, a number of 3-D CFD simulations are performed using the RANS technique in CONVERGE.
Technical Paper

On Maximizing Argon Engines' Performance via Subzero Intake Temperatures in HCCI Mode at High Compression Ratios

2020-04-14
2020-01-1133
The improvement of the indicated thermal efficiency of an argon power cycle (replacing nitrogen with argon in the combustion reaction) is investigated in a CFR engine at high compression ratios in homogeneous charge compression ignition (HCCI) mode. The study combines the two effects that can increase the thermodynamic efficiency as predicted by the ideal Otto cycle: high specific heat ratio (provided by argon), and high compression ratios. However, since argon has relatively low heat capacity (at constant volume), it results in high in-cylinder temperatures, which in turn, leads to the occurrence of knock. Knock limits the feasible range of compression ratios and further increasing the compression ratio can cause serious damage to the engine due to the high pressure rise rate caused by advancing the combustion phasing.
Technical Paper

Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry

2020-04-14
2020-01-0825
Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio.
Technical Paper

Optical Study on the Fuel Spray Characteristics of the Four-Consecutive-Injections Strategy Used in High-Pressure Isobaric Combustion

2020-04-14
2020-01-1129
High-pressure isobaric combustion used in the double compression expansion engine (DCEE) concept was proposed to obtain higher engine brake thermal efficiency than the conventional diesel engine. Experiments on the metal engines showed that four consecutive injections delivered by a single injector can achieve isobaric combustion. Improved understanding of the detailed fuel-air mixing with multiple consecutive injections is needed to optimize the isobaric combustion and reduce engine emissions. In this study, we explored the fuel spray characteristics of the four-consecutive-injections strategy using high-speed imaging with background illumination and fuel-tracer planar laser-induced fluorescence (PLIF) imaging in a heavy-duty optical engine under non-reactive conditions. Toluene of 2% by volume was added to the n-heptane and served as the tracer. The fourth harmonic of a 10 Hz Nd:YAG laser was applied for the excitation of toluene.
Technical Paper

Regulated Emissions and Detailed Particle Characterisation for Diesel and RME Biodiesel Fuel Combustion with Varying EGR in a Heavy-Duty Engine

2019-12-19
2019-01-2291
This study investigates particulate matter (PM) and regulated emissions from renewable rapeseed oil methyl ester (RME) biodiesel in pure and blended forms and contrasts that to conventional diesel fuel. Environmental and health concerns are the major motivation for combustion engines research, especially finding sustainable alternatives to fossil fuels and reducing diesel PM emissions. Fatty acid methyl esters (FAME), including RME, are renewable fuels commonly used from low level blends with diesel to full substitution. They strongly reduce the net carbon dioxide emissions. It is largely unknown how the emissions and characteristics of PM get altered by the combined effect of adding biodiesel to diesel and implementing modern engine concepts that reduce nitrogen oxides (NOx) emissions by exhaust gas recirculation (EGR).
Technical Paper

Fuel Flexibility Study of a Compression Ignition Engine at High Loads

2019-12-19
2019-01-2193
Engine experiments were performed on a single-cylinder heavy-duty engine at relatively high loads to investigate the regions where the combustion characteristics are unchanged regardless of the fuel octane number. Primary Reference Fuels (PRFs) and three different commercial fuels with RON values ranging from 0 to 100 were tested in this study. A sweep of net indicated mean effective pressure (IMEPNet) of 5 to 20 bar, absolute intake pressure of 1.5 to 2.8 bar, exhaust gas recirculation (EGR) of 0 to 40%, and fuel injection pressure of 700 to 1400 bar were performed to investigate the combustion characteristics, ignition delay time, combustion duration, efficiency, and emissions. At the highest load point (IMEPNet = 20 bar), all the fuels burn as in conventional diesel combustion. Despite the wide range of octane numbers, all fuels had similar ignition delay time, combustion duration, indicated efficiency, and emissions at 10 to 20 bar IMEPNet.
Technical Paper

Thermal Efficiency Comparison of Different Injector Constellations in a CI Engine

2019-09-09
2019-24-0172
More stringent emission regulations call for high-efficiency engines in the heavy-duty vehicle sector. Towards this goal, reduced heat losses, as well as increased work output, are needed. In this study, a multiple injector concept to control the combustion as well as reduce the hot boundary zones is proposed. Earlier studies have proven that multiple injectors experience lower heat losses and higher efficiency. However, a comprehensive investigation of the causes for experimental heat loss was not performed in depth. Experiments in a heavy-duty CI engine equipped with three injectors were thus performed. Engine configurations of single, dual and triple injectors were compared for a single-injection case as well as a multi-injection (Sabathe-cycle) case. Heat losses, efficiency and the emission levels were quantified and investigated. Optical experiments were performed to investigate the temperature field as well as flame behavior.
Technical Paper

Study of Fuel Octane Sensitivity Effects on Gasoline Partially Premixed Combustion Using Optical Diagnostics

2019-09-09
2019-24-0025
Partially premixed combustion (PPC) is a low-temperature combustion concept that could deliver higher engine efficiency, as well as lower emissions. Gasoline-like fuel compression ignition (GCI) is beneficial for air/fuel mixing process under PPC mode because of the superior auto-ignition resistance to prolong ignition delay time. In current experiments, three surrogate fuels with same research octane number (RON77) but different octane sensitivities (OS), PRF77 (S = 0), TPRF77-a (S = 3) and TPRF77-b (S = 5), are tested in a full-transparent single cylinder AVL optical compression ignition (CI) engine at low load conditions. Aiming at investigating the fuel octane sensitivity effect on engine combustion behavior as well as emissions under GCI-PPC mode, engine parameters, and emission data during combustion are compared for the test fuels with a change of injection timing.
Technical Paper

Learning Based Model Predictive Control of Combustion Timing in Multi-Cylinder Partially Premixed Combustion Engine

2019-09-09
2019-24-0016
Partially Premixed Combustion (PPC) has shown to be a promising advanced combustion mode for future engines in terms of efficiency and emission levels. The combustion timing should be suitably phased to realize high efficiency. However, a simple constant model based predictive controller is not sufficient for controlling the combustion during transient operation. This article proposed one learning based model predictive control (LBMPC) approach to achieve controllability and feasibility. A learning model was developed to capture combustion variation. Since PPC engines could have unacceptably high pressure-rise rates at different operation points, triple injection is applied as a solvent, with the use of two pilot fuel injections. The LBMPC controller utilizes the main injection timing to manage the combustion timing. The cylinder pressure is used as the combustion feedback. The method is validated in a multi-cylinder heavy-duty PPC engine for transient control.
Technical Paper

Measurement of Gasoline Exhaust Particulate Matter Emissions with a Wide-Range EGR in a Heavy-Duty Diesel Engine

2019-04-02
2019-01-0761
A large number of measurement techniques have been developed or adapted from other fields to measure various parameters of engine particulates. With the strict limits given by regulations on pollutant emissions, many advanced combustion strategies have been developed towards cleaner combustion. Exhaust gas recirculation (EGR) is widely applied to suppress nitrogen oxide (NOx) and reduce soot emissions. On the other hand, gasoline starts to be utilized in compression ignition engines due to great potential in soot reduction and high engine efficiency. New engine trends raise the need for good sensitivity and suitable accuracy of the PM measurement techniques to detect particulates with smaller size and low particulate mass emissions. In this work, we present a comparison between different measurement techniques for particulate matter (PM) emissions in a compression ignition engine running on gasoline fuel. A wide-range of EGR was used with lambda varied from 3 down to 1.
Technical Paper

Combustion Stratification and Dynamic Flame Tracing Analysis of Partially Premixed Combustion in a Compression Ignition Engine Fueled with Low-Octane Fuel

2019-04-02
2019-01-1151
Partially premixed combustion (PPC) is a low-temperature combustion concept, which is between conventional diesel compression ignition (CI) and homogeneous charge compression ignition (HCCI). In PPC mode, the start of injection timing (SOI) is earlier than that of CI and later than that of HCCI and stratified in-cylinder fuel/air mixture can be formed to control the auto-ignition by the fuel injection timing. Gasoline fuel is beneficial for PPC mode because of its superior resistance to auto-ignition, which can enhance fuel-air charge mixing process with longer ignition delay time. The scope of this study is to investigate in-cylinder auto-ignition, combustion evolution, combustion stratification, and engine-out emissions at PPC operating mode under lean and low load engine conditions with different injection timings. Primary reference fuel PRF77, was selected as the low-octane test fuel.
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Technical Paper

Optical Investigation on the Combustion Process Differences between Double-Pilot and Closely-Coupled Triple-Pilot Injection Strategies in a LD Diesel Engine

2019-01-15
2019-01-0022
The combustion processes of three injection strategies in a light-duty (LD) diesel engine at a medium load point are captured with a high speed video camera. A double-pilot/main/single-post injection strategy representative of a LD Euro 6 calibration is considered as the reference. There is a modest temporal spacing (dwell) after the first pilot (P1) and second pilot (P2). A second strategy, “A,” adds a third pilot (P3). The dwell after both P2 and P3 are several times shorter than in the reference strategy. A third strategy, “B,” further reduces all dwells. Each injection has its own associated local peak in the heat release rate (HRR) following some ignition delay. Between these peaks lie local minima, or dips. In all three cases, the fuel from P1 combusts as a propagating premixed flame. For all strategies, the ignition of P2 primarily occurs at its interface with the existing combustion regions.
Technical Paper

CFD Study of Heat Transfer Reduction Using Multiple Injectors in a DCEE Concept

2019-01-15
2019-01-0070
Earlier studies on efficiency improvement in CI engines have suggested that heat transfer losses contribute largely to the total energy losses. Fuel impingement on the cylinder walls is typically associated with high heat transfer. This study proposes a two-injector concept to reduce heat losses and thereby improve efficiency. The two injectors are placed at the rim of the bowl to change the spray pattern. Computational simulations based on the Reynolds-Averaged Navier-Stokes approach have been performed for four different fuel injection timings in order to quantify the reduction in heat losses for the proposed concept. Two-injector concepts were compared to reference cases using only one centrally mounted injector. All simulations were performed in a double compression expansion engine (DCEE) concept using the Volvo D13 single-cylinder engine. In the DCEE, a large portion of the exhaust energy is re-used in the second expansion, thus increasing the thermodynamic efficiency.
X