Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Technical Paper

Thermal Design of the Mars Science Laboratory Powered Descent Vehicle

2008-06-29
2008-01-2001
NASA's Mars Science Laboratory mission will use a Powered Descent Vehicle to accurately and safely land a roving, robotic laboratory on the surface of Mars. The precision landing systems employed on this vehicle are exposed to a wide range of mission environments from deep space cruise to atmospheric descent and require a robust and adaptable thermal design. This paper discusses the overall thermal design philosophy of the MSL Powered Descent Vehicle and presents analysis of the active and passive elements comprising the Cruise, Entry, Descent, and Landing thermal control systems.
Technical Paper

Mechanically Pumped Fluid Loop Technologies for Thermal Control of Future Mars Rovers

2006-07-17
2006-01-2035
Future planetary science missions planned for Mars are expected to be more complex and thermally challenging than any of the previous missions. For future rovers, the operational parameters such as landing site latitudes, mission life, distance traversed, and rover thermal energy to be managed will be significantly higher (two to five times) than the previous missions. It is a very challenging problem to provide an effective thermal control for the future rovers using traditional passive thermal control technologies. Recent investigations at the Jet Propulsion Laboratory (JPL) have shown that mechanical pump based fluid loops provide a robust and effective thermal control system needed for these future rovers. Mechanical pump based fluid loop (MPFL) technologies are currently being developed at JPL for use on such rovers. These fluid loops are planned for use during spacecraft cruise from earth to Mars and also on the Martian surface operations.
Technical Paper

Mars Science Laboratory Thermal Control Architecture

2005-07-11
2005-01-2828
The Mars Science Laboratory (MSL1) mission to land a large rover on Mars is being planned for Launch in 2009. As currently conceived, the rover would use a Multi-mission Radioisotope Thermoelectric Generator (MMRTG) to generate about 110 W of electrical power for use in the rover and the science payload. Usage of an MMRTG allows for a large amount of nearly constant electrical power to be generated day and night for all seasons (year around) and latitudes. This offers a large advantage over solar arrays. The MMRTG by its nature dissipates about 2000 W of waste heat. The basic architecture of the thermal system utilizes this waste heat on the surface of Mars to maintain the rover's temperatures within their limits under all conditions. In addition, during cruise, this waste heat needs to be dissipated safely to protect sensitive components in the spacecraft and the rover.
Technical Paper

High Temperature Mechanically Pumped Fluid Loop for Space Applications –Working Fluid Selection

2004-07-19
2004-01-2415
Mechanically pumped single-phase fluid loops are well suited for transporting and rejecting large amounts of waste heat from spacecraft electronics and power supplies. While past implementations of such loops on spacecraft have used moderate operating temperatures (less than 60ºC), higher operating temperatures would allow equivalent heat loads to be rejected by smaller and less massive radiators. A high temperature (100 to 150ºC) mechanically pumped fluid loop is currently being investigated at the Jet Propulsion Laboratory (JPL) for use on future Mars missions. This paper details the trade study used to select the high temperature working fluid for the system and the initial development testing of loop components.
Technical Paper

Mars Pathfinder Active Heat Rejection System: Successful Flight Demonstration of a Mechanically Pumped Cooling Loop

1998-07-13
981684
One of the new technologies successfully demonstrated on the recent Mars Pathfinder mission was the active Heat Rejection System (HRS). This system consisted of a mechanically pumped cooling loop, which actively controlled the temperatures of the various parts of the spacecraft. A single phase Refrigerant 11 liquid was mechanically circulated through the lander and cruise electronics box heat exchangers. This liquid transferred the excess heat to an external radiator on the cruise stage. This is the first time in unmanned spacecraft history that an active heat rejection system of this type has been used on a long duration spacecraft mission. Pathfinder was launched in December 1996 and landed on the Martian surface on July 4, 1997. The system functioned flawlessly during the entire seven months of flight from Earth to Mars. A life test set up of the cooling loop was used to verify the life of the system.
Technical Paper

Mechanical Pumped Cooling Loop for Spacecraft Thermal Control

1996-07-01
961488
The Mars Pathfinder (MPF) Spacecraft, scheduled for a December 1996 launch to Mars, uses a mechanically pumped loop to transfer dissipated heat from the insulated lander electronics to an external radiator. This paper discusses the tradeoffs performed before choosing a mechanical pumped loop as the thermal control system for MPF. It describes the analysis, tradeoffs, design, and predicted performance of this system. The various development tests performed are discussed, along with the current status of this cooling system. Finally, some thoughts on the development of mechanically pumped loops for future spacecraft are presented.
Technical Paper

Integrated Pump Assembly - An Active Cooling System for Mars Pathfinder Thermal Control

1996-07-01
961489
The Mars Pathfinder spacecraft which will be launched in December 1996 features an active cooling system for controlling the temperature of the spacecraft. This will be the first time that such a mechanical pump cooling system is used on an interplanetary or long duration flight (over two weeks) in space. The major element of the cooling system is the Integrated Pump Assembly (IPA). It uses centrifugal pumps to circulate liquid freon to transfer heat from spacecraft electronics to an external radiator. The IPA consists of redundant pumps, motor control electronics, thermal control valves, check valves, and an accumulator. The design and flight implementation of this pump assembly were accomplished in less than two years. This paper describes the design, fabrication, assembly, and testing of the IPA.
X