Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Biomechanical Tolerance of the Cranium

The objective of the study was to investigate the biomechanical response of the intact cranium. Unembalmed human cadavers were used in the study. The specimens were transected at the base of the skull leaving the intracranial contents intact; x-ray and computed tomography (CT) scans were obtained. They were fixed in a specially designed frame at the auditory meatus level and placed on the platform of an electrohydraulic testing device via a six-axis load cell. Following radiography, quasistatic loading to failure was applied to one of the following sites: frontal, vertex, parietal, temporal, or occipital. Retroreflective targets were placed in two mutually orthogonal planes to record the localized temporal kinematics. Applied load and piston displacement, and the output generalized force (and moment) histories were recorded using a modular digital data acquisition system. After the test, x-ray and CT images were obtained, and defleshing was done.
Technical Paper

Biomechanical Analysis of Swimming Pool Neck Injuries

This paper presents an analysis of 67 neck injuries incurred in diving and sliding accidents in swimming pools. The accidents were investigated to establish the appropriate medical and mechanical factors involved. A mathematical model was developed to allow the prediction of the trajectory and velocity of the subjects prior to their injury. Nine of the accidents were selected for real life simulation. The simulation included the selection of test subjects of similar physical build to the accident victims who then performed the maneuvers leading to the injury, but in deeper water. High speed movies (200 frames per second) were taken, above and below the water, to measure the motion. A frame by frame analysis provided data to determine the trajectory and velocity profiles of the test subject. The maneuvers studied included diving from the pool edge, diving from various board types and sliding down various sliding board configurations.
Technical Paper

Study of Human Impact Tolerance Using Investigations and Simulations of Free-Falls

A study of free-fall accidents and resulting injuries was conducted to determine how useful these types of data could be in establishing human injury tolerance limits. “Tolerance” was examined primarily for children at two levels - reversible injury and threat to survival. The specific objectives were to investigate specific free-falls in sufficient depth to permit biomedical or mathematical reconstruction of the fall, simulate selected free-falls to estimate impact response, and compare predicted responses with observed injuries as a means of estimating human tolerance levels. From more than 2100 reported free-falls, 110 were investigated on-site. Seven head-first and three feet-first falls were then simulated using the MVMA 2-D Crash Victim Simulator. Newspaper reports of free-falls showed that males fell six times as often as females and most often while at work. Children fell from windows and balconies more often than from any other hazard.
Technical Paper

Biomechanical Properties of the Human Neck in Lateral Flexion

Properties of the human neck which may influence a person's susceptibility to “whiplash” injury during lateral impact have been studied in 96 normal subjects. Subjects were chosen on the basis of age, sex, and stature and data were grouped into six primary categories based on sex (F, M) and age (18-24, 35-44, 62-74). The data include: measures of head, neck and body anthropometry in standing and simulated automotive seating positions, three-dimensional range of motion of the head and neck, head/neck response to low-level acceleration, and both stretch reflex time and voluntary isometric muscle force in the lateral direction. Reflex times are found to vary from about 30 to 70 ms with young and middle aged persons having faster times than older persons, and females having faster times than males. Muscle strength decreases with age and males are, on the average, stronger than females.
Technical Paper

Cervical Range of Motion and Dynamic Response and Strength of Cervical Muscles

Basic physical characteristics of the neck have been defined which have application to the design of biomechanical models, anthropometric dummies, and occupant crash protection devices. The study was performed using a group of 180 volunteers chosen on the basis of sex, age (18-74 years), and stature. Measurements from each subject included anthropometry, cervical range-of-motion (observed with both x-rays and photographs), the dynamic response of the cervical flexor and extensor muscles to a controlled jerk, and the maximum voluntary strength of the cervical muscles. Data are presented in tabular and graphic form for total range-of-motion, cervical muscle reflex time, decelerations of the head, muscle activation time, and cervical muscle strength. The range-of-motion of females was found to average 1-12 deg greater than that of males, depending upon age, and a definite degradation in range-of-motion was observed with increasing age.
Technical Paper

A Prediction Model of Human Torso Volitional Mobility

Empirical models are presented which predict the threespace position of the torso when responding to reaches with the right arm. Models were derived which specify torso position in terms of the spacial location of 10 surface markers. These markers were positioned over palpable skeletal points of the spine and shoulder girdle. The necessary data were obtained through photogrammetric procedures utilizing four orthogonal cameras. The independent (input) variables to these models are the coordinates of the reach target. A supplementary, slightly more accurate, set of models was also derived in which the set of independent variables was enlarged to include the anthropometric dimensions of the subject. The second, concurrent phase of the analysis resulted in the derivation of a set of models which describes the configuration of the internal, torso skeletal system.
Technical Paper

Door Crashworthiness Criteria

A study of the biomechanical factors concerned with the design of side structures and doors for crashworthiness has been made. Questions regarding optimum stiffness, location of reinforcing members, effect of armrests, and padding have been answered within the framework of injury criteria models. Results of animal studies, cadaver studies, and anthropometric dummies have been combined to produce injury criteria for lateral impacts to the head, thorax, and abdomen. Impacts were applied utilizing a specially designed “air gun” in a laboratory environment emphasizing reproducibility and control. Full-scale crash simulations were performed on an impact sled to verify the results of the more specialized tests and analyses. Scaled models of current production doors were used in the animal series. Scaling relationships for various species of animals have been developed and extrapolated to man. Significant differences in right and left side tolerances to impact were noted and detailed.
Technical Paper

Joint Range of Motion and Mobility of the Human Torso

The object of this study has been to develop a quantitative description of the mobility of the human torso, including the shoulder girdle, neck, thoracic and lumbar vertebral column, and pelvis. This has been accomplished by a systematic multidisciplinary investigation involving techniques of cadaver dissection and measurement, utilizing cineradiofluoroscopy for joint center of rotation location, anthropometry, radiography, and photogrammetry for selected positions and motions of living subjects, and computer analysis. Positional and dimensional data were obtained for 72 anthropometric dimensions on 28 living male subjects statistically representative of the 1967 USAF anthropometric survey of 3542 rated officers, including bone lengths of the extremities and vertebral landmarks. Normal excursion of these limbs was measured in the living, utilizing the landmarks established in initial cadaver dissection.
Technical Paper

Bioengineering of Impact Survival in Business Aircraft

Aircraft used for business (executive corporate transportation or personal business) and utility purposes now represent about one-third of the total United States aircraft inventory. Data from accident investigation of business aircraft involved in survivable accidents indicate serious injuries and fatality to the occupants occur most frequently as a result of the unprotected head and neck or chest flailing in contact with aircraft controls, instrument panel, or structure. Improvement of current aircraft to provide increased occupant safety and survival during crash impacts is both necessary and feasible. Design considerations include folding seat back locks to prevent collapse, increased seat tie-down to structure, instrument panels and glare shields designed to absorb energy through structural design and padding, stronger seat structure, lateral protection, design and packaging of knobs and projections to minimize injury in contact, and installation of upper torso restraint.