Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Study of Automotive Side Window Occupant Containment Characteristics for Tempered and Laminated Glass

2006-04-03
2006-01-1492
This study investigates occupant containment characteristics of tempered and laminated automotive moveable side glass in rollover collisions. FMVSS 216 test protocols were used to induce roof damage or sheet metal damage around the window opening in Lincoln Navigators equipped with tempered and laminated side glass. Dummy-drop tests were then performed to investigate relative containment. The results demonstrate that, for rollovers in which the window structure is compromised, tempered side glass and laminated side glass perform comparably relative to occupant containment. Also discussed are the general strength characteristics of different types of glass construction, the availability of laminated side glass in recent model U.S. vehicles, and anecdotal data supporting the conclusions of testing.
Technical Paper

Riding in the Bed of a Pickup Truck - A Known Hazard

1996-02-01
960440
Accident data from the Fatal Accident Reporting System show that over 300 people each year are killed or injured while riding in the bed of a pickup truck. The number of individuals involved varies from year to year with no discernable trend. The number of people involved has lead to requests for the application of additional warnings to the bodies of pickup trucks, beyond those already found in the owner's manuals advising against the use of the bed of the truck to carry passengers. The question addressed in this study is whether the occupants of the bed of a pickup truck are aware of the risk of increased injury if the truck is involved in an accident while they occupy the bed and as a result whether they require additional information in the form of warnings.
Technical Paper

The Development of a PC Vehicle Crashworthiness Database

1995-02-01
950889
During the past 20 years, computer databases containing systematically recorded descriptions of on-road vehicle accidents have become an established resource for vehicle safety engineers. Until recently, however, use of these data sources for crashworthiness analysis has been limited to those engineers who have both ready access to large computer systems and sufficient skill in computer programming methods. In the following paper, the authors describe a robust data analysis software application they have jointly developed. This program runs on a personal computer and summarizes data residing in specially-prepared subsets of the NCSS, NASS and FARS databases.
Technical Paper

Biomechanical Analysis of Tractor Induced Head Injury

1994-09-01
941726
Head injury is a serious threat to lives of people working around farm machinery. The consequence of head injuries are costly, paralytic, and often fatal. Clinical and biomechanical data on head injuries are reviewed and their application in the analysis of head injury risk associated with farm tractor discussed. A significant proportion of tractor-related injuries and deaths to adults, as well as children, is due directly or indirectly to head injury. An improved injury reporting program and biomechanical studies of human response to tractor rollover, runover, and falls, are needed to understand mechanisms of the associated head injury.
Technical Paper

The Relationship Between Delta V and Injury

1993-11-01
933111
This paper has utilized a specially created subset of the data contained within the National Accident Sampling Study (NASS) for an updated and expanded analysis of the relationship between Delta V and injury. The data presented embrace over 20,000 accidents of passenger cars, light trucks and utility vehicles involved in accidents between 1980 and 1991. These unique accidents have been extracted from the massive amount of available information contained within the NASS data in order that the variables which have the greatest information content for our subject can be studied and analyzed. Some of the variables which were extracted and studied include Delta V, Principle Direction of Force, restraint system type and use, injuries, vehicle weight and type as well as the occupant variables of age and sex which are believed to influence human tolerance to injury.
Technical Paper

Biomechanical Evaluation of Steering Wheel Design

1982-02-01
820478
In a crash, impact against the steering assembly can be a major cause of serious and fatal injury to drivers. But the interrelationship between injury protection and factors of surface area, configuration, padding, relative position of the spokes, and number and stiffness of spokes and rim is not clear. This paper reports a series of high-G sled tests conducted with anesthetized animal subjects in 30 mph impacts at 30 G peaks. A total of eight tests were conducted, five utilizing pig subjects, one a female chimpanzee, one an anthropomorphic dummy, and one test with no subject. Instrumentation included closed circuit TV, a tri-axial load cell mounted between the steering wheel and column, seat belt load measurement, six Photo-Sonics 1000 fps motion picture cameras, and poloroid photography. Medical monitoring pre, during and post-impact was followed by gross and microscopic tissue examination.
Technical Paper

Biomechanical Analysis of Swimming Pool Neck Injuries

1979-02-01
790137
This paper presents an analysis of 67 neck injuries incurred in diving and sliding accidents in swimming pools. The accidents were investigated to establish the appropriate medical and mechanical factors involved. A mathematical model was developed to allow the prediction of the trajectory and velocity of the subjects prior to their injury. Nine of the accidents were selected for real life simulation. The simulation included the selection of test subjects of similar physical build to the accident victims who then performed the maneuvers leading to the injury, but in deeper water. High speed movies (200 frames per second) were taken, above and below the water, to measure the motion. A frame by frame analysis provided data to determine the trajectory and velocity profiles of the test subject. The maneuvers studied included diving from the pool edge, diving from various board types and sliding down various sliding board configurations.
Technical Paper

Crashworthiness Analysis of Field Investigation of Business Aircraft Accidents

1979-02-01
790587
Business and executive aviation represent a combined total of over 40% of the general aviation fleet, but (1977) accounted for only 8.37% of all general aviation accidents recorded. During the period 1964-1977 some 7,351 aircraft engaged in business flying, and 883 in corporate/executive operations, were involved in accidents reported by the NTSB. These accidents were reviewed utilizing the University of Michigan Computerized Accident Files to provide an overall view of the incidence and nature of business/executive aircraft accidents relative to occupant crash injuries. In addition more detailed case studies of selected accidents investigated including a Lear Jet 25B, Cessna 421, Beech Volpar Model 18, and Ted Smith Aerostar 601, are provided to illustrate specific types of crashworthiness, occupant protection, or post-crash emergency egress findings applicable to business/executive operations. Post-crash fire was reported in 29 cases (16.3%) during the 3-year period (1975-1977).
Technical Paper

General Aviation Crash Survivability

1978-02-01
780017
Statistics indicate that during the past decade (1967-1976) the number of general aviation aircraft involved in an accident is equivalent to at least 38% of the total U.S. production during that period. Estimates that an aircraft will be involved in an accident over a 20 year life range are as high as 60-70%. Recognition of this probability has led to crashworthiness and occupant survivability “packaging” design concepts as offering the most realistic approach to reduction of serious and fatal injuries when an accident occurs. This paper reviews and illustrates current general aviation aircraft accident experience relative to occupant impact injury and damage indexes, and provides new data relative to current-generation aircraft.
Technical Paper

Study of Human Impact Tolerance Using Investigations and Simulations of Free-Falls

1977-02-01
770915
A study of free-fall accidents and resulting injuries was conducted to determine how useful these types of data could be in establishing human injury tolerance limits. “Tolerance” was examined primarily for children at two levels - reversible injury and threat to survival. The specific objectives were to investigate specific free-falls in sufficient depth to permit biomedical or mathematical reconstruction of the fall, simulate selected free-falls to estimate impact response, and compare predicted responses with observed injuries as a means of estimating human tolerance levels. From more than 2100 reported free-falls, 110 were investigated on-site. Seven head-first and three feet-first falls were then simulated using the MVMA 2-D Crash Victim Simulator. Newspaper reports of free-falls showed that males fell six times as often as females and most often while at work. Children fell from windows and balconies more often than from any other hazard.
Technical Paper

Civil Aircraft Restraint Systems: State-of-the-Art Evaluation of Standards, Experimental Data, and Accident Experience

1977-02-01
770154
The importance of crashworthiness and the role of restraint systems in occupant impact protection in U.S. civil aircraft design is being increasingly recognized. Current estimates of the number of fatalities which could be prevented annually in survivable accidents range from 33 to 94%. This study reviews the development of existing Federal Aviation Administration restraint system standards from the first requirement for safety belts in the Air Commerce Regulations of 1926 to present 14 CFR 1.1. The FAA and industry standards are critically evaluated for Parts 23 (small airplanes), 25 (air transports), 27 (rotorcraft), and 29 (transport category rotorcraft). State-of-the-art developments, including an overview of previous accident experience, results of experimental studies, comparison with other standards, and primary data sources are provided.
Technical Paper

Biomechanical Properties of the Human Neck in Lateral Flexion

1975-02-01
751156
Properties of the human neck which may influence a person's susceptibility to “whiplash” injury during lateral impact have been studied in 96 normal subjects. Subjects were chosen on the basis of age, sex, and stature and data were grouped into six primary categories based on sex (F, M) and age (18-24, 35-44, 62-74). The data include: measures of head, neck and body anthropometry in standing and simulated automotive seating positions, three-dimensional range of motion of the head and neck, head/neck response to low-level acceleration, and both stretch reflex time and voluntary isometric muscle force in the lateral direction. Reflex times are found to vary from about 30 to 70 ms with young and middle aged persons having faster times than older persons, and females having faster times than males. Muscle strength decreases with age and males are, on the average, stronger than females.
Technical Paper

Crashworthiness Investigation of General Aviation Accidents

1975-02-01
750537
General aviation accident investigations can provide valuable data to the design engineer concerning the crash performance of current models and can indicate needed improvements for occupant protection in future aircraft. Current statistics and the historical background of major investigations during the past 65 years are provided. A five-year study of general aviation accidents occurring in the State of Michigan is used as a basis to illustrate recent findings relative to occupant injury mechanisms, relative crash protection, and crashworthiness performance of current models of aircraft. Results indicate that the degree of structural damage may not relate to the degree of occupant injury when the cabin area remains relatively intact. A primary requirement is documented for adequate upper-torso restraint for all occupants, and the excellent crash performance of such a system is described.
Technical Paper

Anthropometry of U.S. Infants and Children

1975-02-01
750423
This report presents the results of a three-year study designed to collect analyze, and reduce selected anthropometric data on 4027 infants and children representative of the current U.S. population ranging in age from newborn to 12 years of age. Since the major purpose was to provide basic measurement data most useful and critical to consumer product design, regulatory consideration, or other direct applications, 12 of the 41 measurements taken were applied measurements which have not been previously available. As an example of the direct application to product design, measurement of buttock depth on 3-to 6-month-old infants provided an objective basis for establishment of crib interslat distances. A substantial portion of the study involved the design, fabrication, development, and testing of a new generation of anthropometric measuring devices which transmit measurement signals to a portable mini-computer data acquisition system or to a set of readout meters.
Technical Paper

A New Crash Test Device- “Repeatable Pete”

1973-02-01
730983
A new crash test device has been developed, called “Repeatable Pete.” It is a repeatable, durable anthropomorphic dummy with humanlike dynamic performance. This paper describes the device and gives details of its design and performance during testing in automotive situations. The head, neck, and chest match the latest biomechanical information on the dynamic responses of unembalmed cadavers. The head c.g. accelerations adequately match the skull acceleration, so that head injury criteria based upon cadaver skull acceleration may be used.
Technical Paper

Cervical Range of Motion and Dynamic Response and Strength of Cervical Muscles

1973-02-01
730975
Basic physical characteristics of the neck have been defined which have application to the design of biomechanical models, anthropometric dummies, and occupant crash protection devices. The study was performed using a group of 180 volunteers chosen on the basis of sex, age (18-74 years), and stature. Measurements from each subject included anthropometry, cervical range-of-motion (observed with both x-rays and photographs), the dynamic response of the cervical flexor and extensor muscles to a controlled jerk, and the maximum voluntary strength of the cervical muscles. Data are presented in tabular and graphic form for total range-of-motion, cervical muscle reflex time, decelerations of the head, muscle activation time, and cervical muscle strength. The range-of-motion of females was found to average 1-12 deg greater than that of males, depending upon age, and a definite degradation in range-of-motion was observed with increasing age.
Technical Paper

Biomechanics of Seat Belt Design

1972-02-01
720972
This paper discusses the development of adequate criteria and evaluation methods for seat belt restraint design. These criteria should include the effect of seat belts in abdominal injury as well as head injury. It is concluded that belt load limiters and energy-absorbing devices should limit head-to-vehicle contact, ensure that the lap belt maintains proper contact with the bony pelvic girdle, and limit the belt loads. Studies are made of pulse shape and belt fabrics. Currently available mathematical models are used for the studies included in the paper.
Technical Paper

Improved Neck Simulation for Anthropometric Dummies

1972-02-01
720958
This paper describes the development of an improved neck simulation that can be adapted to current anthropometric dummies. The primary goal of the neck design is to provide a reasonable simulation of human motion during impact while maintaining a simple, rugged structure. A synthesis of the current literature on cervical spine mechanics was incorporated with the results of x-ray studies of cervical spine mobility in human volunteers and with the analysis of head-neck motions in human volunteer sled tests to provide a background for the design and evaluation of neck models. Development tests on neck simulations were carried out using a small impact sled. Tests on the final prototype simulation were also performed with a dummy on a large impact sled. Both accelerometers and high-speed movies were used for performance evaluation.
Technical Paper

Dynamic Performance of Child Seating Systems

1972-02-01
720971
In a previous study, an extensive study of the dynamic performance of child seating systems indicated that little protection was provided under circumstances other than panic braking. This study was performed with impact test conditions of 30 mph frontal and 20 mph lateral and rear barrier impacts with seating systems meeting the requirements of FMVSS 213. Additionally, the performance of prototype seats developed under contract with the Department of Transportation under similar test conditions will be presented to compare the protective qualities available with seats of current design and those that could become available in the future. The performance of the child seats will be evaluated using two criteria, motion limits and acceleration limits. It is believed that the performance of child seats can be determined without the extensive test equipment and facilities required for adult seating and restraint systems.
Technical Paper

Joint Range of Motion and Mobility of the Human Torso

1971-02-01
710848
The object of this study has been to develop a quantitative description of the mobility of the human torso, including the shoulder girdle, neck, thoracic and lumbar vertebral column, and pelvis. This has been accomplished by a systematic multidisciplinary investigation involving techniques of cadaver dissection and measurement, utilizing cineradiofluoroscopy for joint center of rotation location, anthropometry, radiography, and photogrammetry for selected positions and motions of living subjects, and computer analysis. Positional and dimensional data were obtained for 72 anthropometric dimensions on 28 living male subjects statistically representative of the 1967 USAF anthropometric survey of 3542 rated officers, including bone lengths of the extremities and vertebral landmarks. Normal excursion of these limbs was measured in the living, utilizing the landmarks established in initial cadaver dissection.
X