Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

Starting and Developing an Engineering Career: The Barriers and Opportunities

There has probably never been such a demand for professionally qualified engineers, and yet both the number and diversity of people entering the profession continue to decline. Worldwide, there are very many initiatives - some generally encouraging interest in the profession, and others targeting specific audiences. The reports speak of local success, but the overall picture remains discouraging. In this paper we focus on the “pipeline” from primary education through to the transition from graduate engineer into an experienced member of engineering staff. We have based the discussion on both the presentations and comments made during a panel discussion held at the 2013 SAE International Congress. The paper is intended as a summary of the points raised during that discussion and, we hope proves to be starting point for further investigation and analysis. Of particular note is the sheer diversity of initiatives, and the pressing need for role models and mentoring.
Technical Paper

The Potential for Thermo-Electric Devices in Passenger Vehicle Applications

The promise of thermo-electric (TE) technology in vehicles is a low maintenance solid state device for power generation. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. The potential to make use of an otherwise wasted flow of energy means that the overall system efficiency can be improved substantially. One of the barriers to a successful application of the technology is the device efficiency. The TE properties of even the most advanced materials are still not sufficient for a practical, cost effective device. However the rate of development is such that practical devices are likely to be available within the next fifteen years. In a previous paper [ 1 ], the potential for such a device was shown through an integrated vehicle simulation and TEG model.
Technical Paper

An Evaluation of Formula SAE in the Context of the UK Engineering Education: Culture, Money and Space

This paper presents the conclusions of a study into the way the Formula SAE project works in the UK academic sector. The motivation for the work arose during the introduction of the project at the University of Sussex when we needed to evaluate the cost effectiveness of the project as part of the engineering curriculum. The traditional view of FSAE in the UK was that it proved a valuable recruitment tool and when only a few universities offered the project to students this was clearly the case. However now that the project is more widely adopted and where smaller Departments are now supporting the project, there is a need to look more closely at the effectiveness of the project. Identification of the factors that make a successful entry has also helped in an evaluation of the resource requirements. The general conclusion from the work is that Departments must work to extract the benefits of the project through curriculum planning.
Technical Paper

Project-Based Learning in University Programmes: Getting the Best Out of Formula SAE

At Sussex our attempts to introduce Formula SAE were initially slow and the results disappointing. At the same time we were developing and introducing modules in our engineering programmes that were entirely project-based, and in one case, included only e-learning, (with no lectures) after an introductory briefing. Formula SAE made faltering progress whilst it remained a voluntary activity. Support of a voluntary group by means of individually assessed projects at both undergraduate and masters level simply led to a series of unconnected technologies, although they were to prove of value later. Project-based activity in engineering had three distinctive characteristics which were to form our approach to Formula SAE: the need for a strong team ethos from the start of the project; an acceptance of the importance of process, and in particular project planning; and strong communication.
Technical Paper

Integrating Formula SAE with the Engineering Curriculum

The Formula SAE competition (known as Formula Student in the UK) is well established and continues to be highly popular with engineering students. The annual United Kingdom competition bears witness to this enthusiasm with a strong turnout of a total of 84 teams, including 41 teams from the United Kingdom and 21 other nations represented in 2004. In 2004 some countries, including Japan, Australia and South Korea participated for the first time. There are, for a university, significant implications of resource costs when running the Formula SAE project, mainly financial and time. Time costs in particular are acute with supervision time from university faculty groups and technicians (this latter being particularly intense). This investment needs justification in the light of other demands.