Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of Thermal Stress on Silicon Nitride Surface Caused by Drop-Wall Interaction at Engine Conditions

2024-04-09
2024-01-2584
The phenomenon of drop-wall interaction plays a crucial role in a wide range of industrial applications. When liquid droplets come into contact with a high-temperature surface, it can lead to thermal shock due to rapid temperature fluctuations. This abrupt temperature change can generate thermal stress within the solid wall material. If the thermal stress exceeds the material's strength in that specific stress mode, it can result in material failure. Therefore, it is imperative to delve into the evolving temperature patterns on high-temperature surfaces to optimize material durability. This study focuses on investigating drop-wall interactions within the context of engine environments. To achieve this, the Smoothed Particle Hydrodynamics (SPH) method is employed to simulate the impact of fuel droplets on a silicon nitride wall. The goal is to understand the heat transfer mechanisms, thermal penetration depths, and temperature distributions within the heated wall.
Technical Paper

An optimized, data-driven reaction mechanism for Dual-Fuel combustion of Ammonia and Diesel Primary Reference Fuels

2023-09-29
2023-32-0101
The possibility to operate current diesel engines in dual-fuel mode with the addition of an alternative fuel is fundamental to accelerate the energy transition to achieve carbon neutrality. The simulation of the dual- fuel combustion process with 0D/1D combustion models is fundamental for the performance prediction, but still particularly challenging, due to chemical interactions of the mixture. The authors defined a novel data-driven workflow for the development of combustion reaction mechanisms and used it to generate a dual-fuel mechanism for Ammonia and Diesel Primary Reference Fuels (DPRF) suitable for efficient combustion simulations in heavy duty engines, with variable cetane number Diesel fuels. A baseline reaction mechanism was created by merging the detailed ammonia mechanism by Glarborg et al. with reaction pathways for n- hexadecane and 2,2,4,4,6,8,8-heptamethylnonane from a well-established multi-component fuel mechanism.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Journal Article

Modeling the Effects of Drop Impingement Frequency on Heated Walls at Engine Conditions

2022-03-29
2022-01-0508
Understanding the fundamental details of drop/wall interactions is important to improving engine performance. Most of the drop-wall interactions studies are based on the impact of a single drop on the wall. To accurately mimic and model the real engine conditions, it is necessary to characterize spray/wall interactions with different impingement frequencies at a wide range of wall temperatures. In this study, a numerical method, based on Smoothed Particle Hydrodynamics (SPH), is used to simulate consecutive droplet impacts on a heated wall both below and above the Leidenfrost temperature. Impact regimes are identified for various impact conditions by analyzing the time evolution of the post-impingement process of n-heptane drops at different impingement frequencies and wall surface temperatures. For wall temperature below the Leidenfrost temperature, the recoiled film does not leave the surface.
Technical Paper

Computational Optimization of a Diesel Engine Calibration Using a Novel SVM-PSO Method

2019-04-02
2019-01-0542
Accelerated computational optimization of a diesel engine calibration was achieved by combining Support Vector Regression models with the Particle Swarm Optimization routine. The framework utilized a full engine simulation as a surrogate for a real engine test with test parameters closely resembling a typical 4.5L diesel engine. Initial tests were run with multi-modal test problems including Rastragin's, Bukin's, Ackely's, and Schubert's functions which informed the ML model tuning hyper-parameters. To improve the performance of the engine the hybrid approach was used to optimize the Fuel Pressure, Injection Timing, Pilot Timing and Fraction, and EGR rate. Nitrogen Oxides, Particulate Matter, and Specific Fuel Consumption are simultaneously reduced. As expected, optimums reflect a late injection strategy with moderately high EGR rates.
Technical Paper

Numerical Study of Fuel Droplet Impact on Heated Surfaces Using Smoothed Particle Hydrodynamics Method

2019-04-02
2019-01-0291
The impact of fuel droplets on heated surfaces is of great importance in internal combustion engines. In engine computational fluid dynamics (CFD) simulations, the drop-wall interaction is usually considered by using models derived from experimental data and correlations rather than direct simulations. This paper presented a numerical method based on smoothed particle hydrodynamics (SPH), which can directly simulate the impact process of fuel droplets impinging on solid surfaces. The SPH method is a Lagrangian meshfree particle method. It discretizes fluid into a number of SPH particles and governing equations of fluid into a set of particle equations. By solving the particle equations, the movement of particles can be obtained, which represents the fluid flows. The SPH method is able to simulate the large deformation and breakup of liquid drops without using additional interface tracking techniques.
Technical Paper

Ultra-High Fuel Injection Pressure with Massive EGR to Enable Simultaneous Reduction of Soot and NOx Emissions

2018-04-03
2018-01-0227
In this study both double and triple injection strategies were used with fuel pressures up to 300 and 250 MPa, respectively. Tests were conducted at medium load conditions with cooled, high-pressure EGR at a ratio of 40% and higher. A four-cylinder production engine, featuring double turbochargers with one variable geometry turbocharger, was tested. The double injection strategy consisted of a 20% close-coupled pilot injection while the triple injection strategy introduced a post injection consisting of 10% the total cycle fuel. Results of this study do not indicate an advantage to extreme fuel pressure. The increased air entrainment reduces soot while increasing the premixed burn heat release, mean cylinder temperature, and NOx. Compared to the double injection scheme, triple injections achieved much lower soot for the same EGR rate with only a small NOx penalty.
Technical Paper

Developing a 55% BTE Commercial Heavy-Duty Opposed-Piston Engine without a Waste Heat Recovery System

2017-03-28
2017-01-0638
Heavy-duty vehicles, currently the second largest source of fuel consumption and carbon emissions are projected to be fastest growing mode in transportation sector in future. There is a clear need to increase fuel efficiency and lower emissions for these engines. The Opposed-Piston Engine (OP Engine) has the potential to address this growing need. In this paper, results are presented for a 9.8L three-cylinder two-stroke OP Engine that shows the potential of achieving 55% brake thermal efficiency (BTE), while simultaneously satisfying emission targets for tail pipe emissions. The two-stroke OP Engines are inherently more cost effective due to less engine parts. The OP Engine architecture presented in this paper can meet this performance without the use of waste heat recovery systems or turbo-compounding and hence is the most cost effective technology to deliver this level of fuel efficiency.
Technical Paper

Augmentation of an Artificial Neural Network (ANN) Model with Expert Knowledge of Critical Combustion Features for Optimizing a Compression Ignition Engine Using Multiple Injections

2017-03-28
2017-01-0701
The objective of this work was to identify methods of reliably predicting optimum operating conditions in an experimental compression ignition engine using multiple injections. Abstract modeling offered an efficient way to predict large volumes data, when compared with simulation, although the initial cost of constructing such models can be large. This work aims to reduce that initial cost by adding knowledge about the favorable network structures and training rules which are discovered. The data were gathered from a high pressure common rail direct injection turbocharged compression ignition engine utilizing a high EGR configuration. The range of design parameters were relatively large; 100 MPa - 240 MPa for fuel pressure, up to 62% EGR using a modified, long-route, low pressure EGR system, while the pilot timing, main timing, and pilot ratio were free within the safe operating window for the engine.
Journal Article

Achieving Bharat Stage VI Emissions Regulations While Improving Fuel Economy with the Opposed-Piston Engine

2017-01-10
2017-26-0056
The government of India has decided to implement Bharat Stage VI (BS-VI) emissions standards from April 2020. This requires OEMs to equip their diesel engines with costly after-treatment, EGR systems and higher rail pressure fuel systems. By one estimate, BS-VI engines are expected to be 15 to 20% more expensive than BS-IV engines, while also suffering with 2 to 3 % lower fuel economy. OEMs are looking for solutions to meet the BS-VI emissions standards while still keeping the upfront and operating costs low enough for their products to attract customers; however traditional engine technologies seem to have exhausted the possibilities. Fuel economy improvement technologies applied to traditional 4-stroke engines bring small benefits with large cost penalties. One promising solution to meet both current, and future, emissions standards with much improved fuel economy at lower cost is the Opposed Piston (OP) engine.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Trade-Offs Between Emissions and Efficiency for Multiple Injections of Neat Biodiesel in a Turbocharged Diesel Engine Using an Enhanced PSO-GA Optimization Strategy

2016-04-05
2016-01-0630
Particle Swarm and the Genetic Algorithm were coupled to optimize multiple performance metrics for the combustion of neat biodiesel in a turbocharged, four cylinder, John Deere engine operating under constant partial load. The enhanced algorithm was used with five inputs including EGR, injection pressure, and the timing/distribution of fuel between a pilot and main injection. A merit function was defined and used to minimize five output parameters including CO, NOx, PM, HC and fuel consumption simultaneously. The combination of PSO and GA yielded convergence to a Pareto regime without the need for excessive engine runs. Results along the Pareto front illustrate the tradeoff between NOx and particulate matter seen in the literature.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Technical Paper

Measured and Predicted Soot Particle Emissions from Natural Gas Engines

2015-09-06
2015-24-2518
Due to the new challenge of meeting number-based regulations for particulate matter (PM), a numerical and experimental study has been conducted to better understand particulate formation in engines fuelled with compressed natural gas. The study has been conducted on a Heavy-Duty, Euro VI, 4-cylinder, spark ignited engine, with multipoint sequential phased injection and stoichiometric combustion. For the experimental measurements two different instruments were used: a condensation particle counter (CPC) and a fast-response particle size spectrometer (DMS) the latter able also to provide a particle size distribution of the measured particles in the range from 5 to 1000 nm. Experimental measurements in both stationary and transient conditions were carried out. The data using the World Harmonized Transient Cycle (WHTC) were useful to detect which operating conditions lead to high numbers of particles. Then a further transient test was used for a more detailed and deeper analysis.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC

2015-04-14
2015-01-0856
Control of the timing and magnitude of heat release is one of the biggest challenges for premixed compression ignition, especially when attempting to operate at high load. Single-fuel strategies such as partially premixed combustion (PPC) use direct injection of gasoline to stratify equivalence ratio and retard heat release, thereby reducing pressure rise rate and enabling high load operation. However, retarding the heat release also reduces the maximum work extraction, effectively creating a tradeoff between efficiency and noise. Dual-fuel strategies such as reactivity controlled compression ignition (RCCI) use premixed gasoline and direct injection of diesel to stratify both equivalence ratio and fuel reactivity, which allows for greater control over the timing and duration of heat release. This enables combustion phasing closer to top dead center (TDC), which is thermodynamically favorable.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Journal Article

Load Limit Extension in Pre-Mixed Compression Ignition Using a 2-Zone Combustion System

2015-04-14
2015-01-0860
A novel 2-zone combustion system was examined at medium load operation consistent with loads in the light duty vehicle drive cycle (7.6 bar BMEP and 2600 rev/min). Pressure rise rate and noise can limit the part of the engine map where pre-mixed combustion strategies such as HCCI or RCCI can be used. The present 2-zone pistons have an axial projection that divides the near TDC volume into two regions (inner and outer) joined by a narrow communication channel defined by the squish height. Dividing the near TDC volume provides a means to prepare two fuel-air mixtures with different ignition characteristics. Depending on the fuel injection timing, the reactivity of the inner or outer volume can be raised to provide an ignition source for the fuel-air mixture in the other, less reactive volume. Multi-dimensional CFD modeling was used to design the 2-zone piston geometry examined in this study.
Journal Article

Isobutanol as Both Low Reactivity and High Reactivity Fuels with Addition of Di-Tert Butyl Peroxide (DTBP) in RCCI Combustion

2015-04-14
2015-01-0839
Engine experiments and multi-dimensional modeling were used to explore the effects of isobutanol as both the high and low reactivity fuels in Reactivity Controlled Compression Ignition (RCCI) Combustion. Three fuel combinations were examined; EEE/diesel, isobutanol/diesel, and isobutanol/isobutanol+DTBP (di-tert butyl peroxide). In order to assess the relative performance of the fuel combinations of interest under RCCI operation, the engine was operated under conditions representative of typical low temperature combustion (LTC). A net load of 6 bar indicated mean effective pressure (IMEP) was chosen because it provides a wide operable range of equivalence ratios and combustion phasings without excessively high peak pressure rise rates (PPRR). The engine was operated under various intake pressures with global equivalence ratios from 0.28-0.36, and various combustion phasings (defined by 50% mass fraction burned-CA50) from about 1.5 to about 10 deg after top dead center (ATDC).
X