Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine

2013-04-08
2013-01-1653
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines [1, 2, 3, 4, 5, 6]. The current study investigates RCCI operation in a light-duty multi-cylinder engine over a wide number of operating points representing vehicle operation over the US EPA FTP test. Similarly, previous RCCI engine experiments have used petroleum based fuels such as ultra-low sulfur diesel fuel (ULSD) and gasoline, with some work done using high percentages of biofuels, namely E85 [7]. The current study was conducted to examine RCCI performance with moderate biofuel blends, such as E20 and B20, as compared to conventional gasoline and ULSD.
Journal Article

Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion

2013-04-08
2013-01-1678
The focus of the present study was to characterize the fuel reactivity of high octane number fuels (i.e., low fuel reactivity), namely gasoline, ethanol, and methanol when mixed with cetane improvers under lean, premixed combustion conditions. Two commercially available cetane improvers, 2-ethylhexyl nitrate and di-tert-butyl peroxide, were used in the study. First, blends of the primary reference fuels iso-octane and n-heptane were port injected under fixed operating conditions. The resulting combustion phasings were used to generate effective PRF number maps. Then, blends of the aforementioned base fuels and cetane improvers were tested under the same lean premixed conditions as the PRF blends. Based on the combustion phasing results of the base fuel and cetane improver mixture, the effective PRF number, or octane number, could be determined.
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Journal Article

Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence

2012-04-16
2012-01-0375
Premixed charge compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions with diesel-like efficiency. However, these strategies are generally confined to low loads due to inadequate control of combustion phasing and heat-release rate. One PCI strategy, dual-fuel reactivity-controlled compression ignition (RCCI), has been developed to control combustion phasing and rate of heat release. The RCCI concept uses in-cylinder blending of two fuels with different auto-ignition characteristics to achieve controlled high-efficiency clean combustion. This study explores fuel reactivity stratification as a method to control the rate of heat release for PCI combustion. To introduce fuel reactivity stratification, the research engine is equipped with two fuel systems. A low-pressure (100 bar) gasoline direct injector (GDI) delivers iso-octane, and a higher-pressure (600 bar) common-rail diesel direct-injector delivers n-heptane.
Technical Paper

Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver

2012-04-16
2012-01-1110
Premixed compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions and diesel-like efficiency. However, these strategies are generally confined to low loads due to difficulties controlling the combustion phasing and heat release rate. Recent experiments have demonstrated that dual-fuel reactivity-controlled compression ignition (RCCI) combustion can improve PCI combustion control and expand the PCI load range. Previous studies have explored RCCI operation using port-fuel injection (PFI) of gasoline and direct-injection (DI) of diesel fuel. In this study, experiments are performed using a light-duty, single-cylinder research engine to investigate RCCI combustion using a single fuel with the addition of a cetane improver 2-ethylhexyl nitrate (EHN). The fuel delivery strategy consists of port-fuel injection of E10 (i.e., 10% ethanol in gasoline) and direct-injection of E10 mixed with 3% EHN.
Technical Paper

Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels

2011-04-12
2011-01-0363
Engine experiments and multi-dimensional modeling were used to explore Reactivity Controlled Compression Ignition (RCCI) to realize highly-efficient combustion with near zero levels of NOx and PM. In-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injection of higher reactivity fuels was used to control combustion phasing and duration. In addition to injection and operating parameters, the study explored the effect of fuel properties by considering both gasoline-diesel dual-fuel operation, ethanol (E85)-diesel dual fuel operation, and a single fuel gasoline-gasoline+DTBP (di-tert butyl peroxide cetane improver). Remarkably, high gross indicated thermal efficiencies were achieved, reaching 59%, 56%, and 57% for E85-diesel, gasoline-diesel, and gasoline-gasoline+DTBP respectively.
Technical Paper

Modeling the Influence of Molecular Interactions on the Vaporization of Multi-component Fuel Sprays

2011-04-12
2011-01-0387
A vaporization model for realistic multi-component fuel sprays is described. The equilibrium at the interface between liquid droplets and the surrounding gas is obtained based on the UNIFAC method, which considers non-ideal molecular interactions that can greatly enhance or suppress the vaporization of the components in the system compared to predictions from ideal mixing using Raoult's Law, especially for polar fuels. The present results using the UNIFAC method are shown to be able to capture the azeotropic behaviors of polar molecule blends, such as mixtures of benzene and ethanol, benzene and iso-propanol, and ethanol and water [1]. Predicted distillation curves of mixtures of ethanol and multi-component gasoline surrogates are compared to those from experiments, and the model gives good improvements on predictions of the distillation curves for initial ethanol volume fractions ranging from 0% to 100%.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

2005-10-24
2005-01-3842
Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Technical Paper

Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics

2002-03-04
2002-01-0213
Managing the injection rate profile is a powerful tool to control engine performance and emission levels. In particular, Common Rail (C.R.) injection systems allow an almost completely flexible fuel injection event in DI-diesel engines by permitting a free mapping of the start of injection, injection pressure, rate of injection and, in the near future, multiple injections. This research deals with the development of a network-based numerical tool for understanding operating condition limits of the Common Rail injector. The models simulate the electro-fluid-mechanical behavior of the injector accounting for cavitation in the nozzle holes. Validation against experiments has been performed. The model has been used to provide insight into the operating conditions of the injector and in order to highlight the application to injection system design.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Technical Paper

Comparison of Computed Spray in a Direct-Injection Spark-Ignited Engine with Planar Images

1997-10-01
972883
Fuel spray atomization and breakup processes within a direct-injection spark-ignition (DISI) engine and outside the engine were modeled using a modified KIVA-3V code with improved spray models. The structures of the predicted sprays were qualitatively compared with planar images. The considered sprays were created by a prototype pressure-swirl injector and the planar images were obtained by laser sheet imaging in an optical DISI engine. In the out-of-engine case, the spray was injected into atmospheric air, and was modeled in a two dimensional bomb. In the engine case, the injection started from 270° ATDC, and full 3-D computations in the same engine were performed. In both cases, two liquid injection pressure conditions were applied, that is, 3.40 MPa and 6.12 MPa. The model gives good prediction of the tip penetration, and external spray shape, but the internal structure prediction has relatively lower accuracy, especially near the spray axis.
Technical Paper

In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine

1997-05-01
971591
Liquid fuel penetration was measured using an endoscopebased imaging system in an operating single-cylinder heavy-duty direct injection diesel engine with simulated turbocharging. Sprays were imaged via the elastic backscatter technique without significantly altering the engine geometry. Light loads (or pilot injections) were also studied because the spray breakup, mixing and vaporization processes can be isolated since they are less influenced by heat feedback from the flame than in a full injection case. The pilot injections included cases with three different fuel amounts (10%, 15% and 20% of the fuel injected in the baseline case, i.e., 75% load and 1600 rev/min) with different start-of-injection timings. Maximum liquid penetration lengths beyond which the fuel is completely vaporized were observed for all the cases studied. The maximum lengths varied from 23 mm to 28 mm for the different start-of-injection timings.
X