Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fundamental study on the effects of Electrically Heated Catalyst on State of Charge of the battery pack for a series hybrid electric vehicle at cold start.

2020-04-14
2020-01-0444
Battery models are recently being developed as one of a component of the powertrain system of Hybrid Electric Vehicle (HEV) to predict the State of Charge (SOC) accurately. The electric components like the Electrically Heated Catalyst (EHC) which is used to reach the catalyst light off temperature in advance are being employed in the powertrain of HEVs. The EHC draws power from the battery pack of the HEV. Therefore, sufficient energy should be stored in the battery pack of an HEV to power the auxiliary components in the powertrain. In a series hybrid electric vehicle system, the engine is primarily used to charge the battery pack. Therefore, it is important to develop a control strategy that triggers the engine start/stop conditions and reduces the frequency of engine operation to minimize the equivalent fuel consumption.
Technical Paper

Modeling Three-Way Catalyst Converters During Cold Starts And Potential Improvements

2019-12-19
2019-01-2326
Three-way catalyst (TWC) converters are often used to purify toxic substances contained in exhaust emissions from gasoline engines. However, a large amount of CO, NOx and THC may be emitted before the TWC reaches its light-off temperature during a cold start. In this work, a numerical model was developed for studying the purification performance of a close-coupled TWC converter during the cold start period. The TWC model was built using axisuite, commercial software by Exothermia S.A. Model gas experiments were designed for calibrating the chemical reaction scheme and corresponding reaction rate parameters in the TWC model. The TWC model was able to simulate the purification performance of CO, NOx and THC under both lean and rich air-fuel equivalence ratios (λ) for different conditions. The light-off temperature and oxygen storage capacity (OSC) behavior were also successfully validated in the model. Vehicle tests were conducted on a chassis dynamometer to verify the TWC model.
Technical Paper

Analysis of NH3 Diffusion Phenomena in a Selective Catalytic Reduction Coated Diesel Particulate Filter Catalyst Using a Simple One-Dimensional Core Model

2019-12-19
2019-01-2236
This paper describes a method for estimating constants related to NH3 gas diffusion phenomena to the active sites in a selective catalytic reduction diesel particulate filter (SCR/DPF) catalyst. A simple one-dimensional NH3 gas diffusion model based on the pore structure inside the catalyst was developed and used to estimate the intracrystalline diffusion coefficient. It was shown that the estimated value agreed well with experimental data.
Technical Paper

Exhaust Purification Performance Enhancement by Early Activation of Three Way Catalysts for Gasoline Engines Used in Hybrid Electric Vehicles

2019-09-09
2019-24-0148
Three-way catalyst (TWC) converters are used to remove harmful substances (e.g., carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC)) emitted from gasoline engines. However, a large amount of emissions could be emitted before the TWC reaches its light-off temperature during a cold start. For hybrid electric vehicles (HEVs) powered by gasoline engines, the emission purification performance by TWC converters unfortunately deteriorates because of mode switching from engine to battery and vice versa, which can repeatedly generate cold start conditions for the TWCs. In this study, aiming to reduce emissions from series HEVs by early activation of TWCs, numerical simulations and experiments are carried out. An HEV is tested on a chassis dynamometer in the Worldwide Light-duty Test Cycle (WLTC) mode. The upstream and downstream gas conditions of the close-coupled catalyst converter are measured.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Technical Paper

Analysis and Modeling of NOx Reduction Based on the Reactivity of Cu Active Sites and Brønsted Acid Sites in a Cu-Chabazite SCR Catalyst

2019-09-09
2019-24-0150
The NOx-reducing activity of a Cu-chabazite selective catalytic reduction (SCR) catalyst was analyzed over a wide temperature range. The analysis was based on the ammonia SCR (NH3-SCR) mechanism and accounted for Cu redox chemistry and reactions at Brønsted acid sites. The reduction of NOx to N2 (De-NOx) at Cu sites was found to proceed via different paths at low and high temperatures. Consequently, the rate-limiting step of the SCR reaction at Cu sites varied with the temperature. The rate of NOx reduction at Cu sites below 200°C was determined by the rate of Cu oxidation. Conversely, the rate of NOx reduction above 300°C was determined by the rate of NH3 adsorption on Cu sites. Moreover, the redox state of the active Cu sites differed at low and high temperatures. To clarify the role of the chabazite Brønsted acid sites, experiments were also performed using a H-chabazite catalyst that lacks Cu sites.
Technical Paper

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

2019-01-15
2019-01-0024
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated.
Technical Paper

Effects of Soot Deposition on NOx Purification Reaction and Mass Transfer in a SCR/DPF Catalyst

2018-09-10
2018-01-1707
Experimental studies were carried out to investigate the effect of soot deposition on NOx purification phenomena in an ammonia selective catalytic reduction coated diesel particulate filter (SCR/DPF) catalyst. To study soot deposition effects on the chemical reactions and mass transfer, two types of testing device were used. A synthetic gas bench enabling tests to be conducted with temperature and flow rate ranges relevant to real driving conditions was used to investigate the soot influence on reduction of NOx to N2 (DeNOx). A micro-reactor that removed the effect of soot deposition on mass transfer in the catalyst layer was used to analyze chemical reactions on a soot surface and their interaction with the SCR catalyst. A filter test brick of a Cu-zeolite SCR/DPF catalyst and a powder catalyst were used for the synthetic gas bench and micro-reactor tests, respectively. Engine soot was sampled in all the tests.
Technical Paper

Impingement and Adhesion on Cylinder Liners with Post Diesel Fuel Injections

2016-10-17
2016-01-2193
Diesel particulate filters (DPF) are widely used in diesel engines, and forced regeneration is necessary to remove particulate matter (PM) accumulating on the DPF. This may be achieved with fuel injected after the main combustion is complete, the socalled “post fuel injection”, and supplied to the diesel oxidation catalyst (DOC) upstream of the DPF. This increases the exhaust gas temperature in the DOC and the DPF is regenerated with the high temperature gas flow. In most cases, the post fuel injection takes place at 30-90CA ATDC, and fuel may impinge on and adhere to the cylinder liner wall in some cases. Buddie and Pischinger [1] have reported a lubricant oil dilution with the post fuel injection by engine tests and simulations, and adhering fuel is a cause of worsening fuel consumption. In this paper, the impingement and adhesion of post diesel fuel injections on the cylinder liner was investigated by an optical method with a high pressure constant volume chamber (ϕ110mm, 883cm3).
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Journal Article

Low Temperature Premixed Diesel Combustion with Blends of Ordinary Diesel Fuel and Normal Heptane

2015-11-17
2015-32-0754
Premixed diesel combustion blending high volatility fuels into diesel fuel were investigated in a modern diesel engine. First, various fractions of normal heptane and diesel fuel were examined to determine the influence of the blending of a highly ignitable and volatile fuel into diesel fuel. The indicated thermal efficiency improves almost linearly with increasing normal heptane fraction, particularly at advanced injection timings when the fuel is not injected directly into the piston cavity. This improvement is mainly due to decreases in the other losses, ϕother which are calculated with the following equation based on the energy balance. ηu: The combustion efficiency calculated from the exhaust gas compositions ηi: The indicated thermal efficiency ϕex: The exhaust loss calculated from the enthalpy difference between intake and exhaust gas The decreases in the other losses with normal heptane blends are due to a reduction in the unburned fuel which does not reach the gas analyzer.
Technical Paper

Development of a Micro-Reactor HC-SCR System and the Evaluation of NOx Reduction Characteristics

2015-09-01
2015-01-2021
To reduce NOx emissions from diesel engines, the urea-SCR (selective catalytic reduction) system has been introduced commercially. In urea-SCR, the freezing point of the urea aqueous solution, the deoxidizer, is −11°C, and the handling of the deoxidizer under cold weather conditions is a problem. Further, the ammonia escape from the catalyst and the generation of N2O emissions are also problems. To overcome these disadvantages of the urea-SCR system, the addition of a hydrocarbon deoxidizer has attracted attention. In this paper, a micro-reactor SCR system was developed and attached to the exhaust pipe of a single cylinder diesel engine. With the micro-reactor, the catalyst temperature, quantity of deoxidizer, and the space velocity can be controlled, and it is possible to use it with gas and liquid phase deoxidizers. The catalyst used in the tests reported here is Ag(1wt%)-γAl2O3.
Technical Paper

Influence of Fuel Volatility on Evaporation Characteristics of Diesel Sprays in Various Low Temperature and Low Density Surrounding Conditions Like at Early Pilot or Late Post Injections

2015-09-01
2015-01-1923
The diesel spray characteristics in early pilot and late post fuel injections in a constant volume chamber which can create the in-cylinder conditions of a diesel engine were visualized with high speed video. At the early pilot and late post fuel injection, there was a longer penetration of the liquid phase fuel spray as well as slower evaporation. With normal heptane the impingement of liquid spray with early pilot and post fuel injections can be avoided due to a faster evaporation. The penetration of liquid phase fuel spray increases significantly at low IMEP and late post injection conditions with diesel fuel.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

Improvement of Combustion and Emissions in a Dual Fuel Compression Ignition Engine with Natural Gas as the Main Fuel

2015-04-14
2015-01-0863
Dual fuel combustion with premixed natural gas as the main fuel and diesel fuel as the ignition source was investigated in a 0.83 L, single cylinder, DI diesel engine. At low loads, increasing the equivalence ratio of natural gas to around 0.5 with intake throttling makes it possible to reduce the THC and CO emissions as well as to improve the thermal efficiency. At high loads, increasing the boost pressure moderates the combustion, but increases the THC and CO emissions, resulting in deterioration of the thermal efficiency. The EGR is essential to suppress the rapid combustion. As misfiring occurs with a compression ratio of 14.5 and there is excessively rapid combustion with 18.5 compression ratio, 16.5 is a suitable compression ratio.
Technical Paper

Computational Study to Improve Thermal Efficiency of Spark Ignition Engine

2015-03-10
2015-01-0011
The objective of this paper is to investigate the potential of lean burn combustion to improve the thermal efficiency of spark ignition engine. Experiments used a single cylinder gasoline spark ignition engine fueled with primary reference fuel of octane number 90, running at 4000 revolution per minute and at wide open throttle. Experiments were conducted at constant fueling rate and in order to lean the mixture, more air is introduced by boosted pressure from stoichiometric mixture to lean limit while maintaining the high output engine torque as possible. Experimental results show that the highest thermal efficiency is obtained at excess air ratio of 1.3 combined with absolute boosted pressure of 117 kPa. Three dimensional computational fluid dynamic simulation with detailed chemical reactions was conducted and compared with results obtained from experiments as based points.
Technical Paper

Visualization Analysis of Diesel Combustion with Water and Diesel Fuel Emulsified Blend in a Constant Volume Chamber Vessel

2014-11-11
2014-32-0127
Diesel-like combustion of an emulsified blend of water and diesel fuel in a constant volume chamber vessel was visualized with high speed color video, further analyzing with a 2-D two color method and shadowgraph images. When the temperature at the fuel injection is 900 K, here while the combustion with unblended diesel fuel in the vessel is similar to ordinary diesel combustion with diffusive combustion, combustion with the emulsified fuel is similar to premixed diesel combustion with a large premixed combustion and very little diffusive combustion. With the emulsified fuel the flame luminosity and temperature are lower, the luminous flame and high temperature regions are smaller, and the duration of the luminous flame is shorter than with diesel fuel. This is due to promotion of premixing with increases in the ignition delay and decreases in the combustion temperature with the water vaporization.
Technical Paper

Dual Fuel Diesel Combustion with Premixed Ethanol as the Main Fuel

2014-10-13
2014-01-2687
Dual fuel combustion with premixed ethanol as the main fuel and direct injection of diesel fuel as an ignition source poses problems including large unburned emissions and excessively rapid combustion. In this report the influence of compression ratios, injection timings of diesel fuel, and intake oxygen concentrations was systematically investigated in a modern diesel engine. The combustion process was classified into three stages: the first rapid combustion of diesel fuel and the ethanol mixture entrained into the diesel fuel spray; the second mild combustion with flame propagation of the ethanol mixture; and the third rapid combustion with auto-ignition of the unburned ethanol mixture without knocking. The third stage combustion occurs occasionally at several operating conditions and has been termed as PREMIER (premixed mixture ignition in the end-gas region) combustion.
Journal Article

Combustion Characteristics of Emulsified Blends of Water and Diesel Fuel in a Diesel Engine with Cooled EGR and Pilot Injection

2013-10-15
2013-32-9022
Water and diesel fuel emulsions containing 13% and 26% water by volume were investigated in a modern diesel engine with relatively early pilot injection, supercharging, and cooled EGR. The heat release from the pilot injection with water emulsions is retarded toward the top dead center due to the poor ignitability, which enables larger pilot and smaller main injection quantities. This characteristic results in improvements in the thermal efficiency due to the larger heat release near the top dead center and the smaller afterburning. With the 26% water emulsion, mild, smokeless, and very low NOx operation is possible at an optimum pilot injection quantity and 15% intake oxygen with EGR at or below 0.9 MPa IMEP, a condition where large smoke emissions are unavoidable with regular unblended diesel fuel. Heat transfer analysis with Woschni's equation did not show the decrease in cooling loss with the water emulsion fuels.
Journal Article

Influence of Fuel Properties on Operational Range and Thermal Efficiency of Premixed Diesel Combustion

2013-10-15
2013-32-9054
The influence of fuel properties on the operational range and the thermal efficiency of premixed diesel combustion was evaluated with an ordinary diesel fuel, a primary reference fuel for cetane numbers, three primary reference fuels for octane numbers, and two normal heptane-toluene blend fuels in a single-cylinder DI diesel engine. The fuel injection timing was set at 25°CA BTDC and the maximum rate of pressure rise was maintained below 1.0 MPa/°CA when lowering the intake oxygen concentration by cooled EGR. With increasing octane numbers, the higher intake oxygen concentration can be used, resulting in higher indicated thermal efficiency due to a higher combustion efficiency. The best thermal efficiency at the optimum intake oxygen concentration with the ordinary diesel fuel is lower than with the primary reference fuels with the similar ignitability but higher volatility.
X