Refine Your Search

Topic

Search Results

Standard

Air Bleed Objective for Rotorcraft Turbine Engines

2023-05-10
CURRENT
AIR984D
This SAE Aerospace Information Report (AIR) defines the helicopter bleed air requirements which may be obtained through compressor extraction and is intended as a guide to engine designers.
Standard

Helicopter Powerplant Corrosion Protection

2023-02-06
CURRENT
AIR4495
This SAE Aerospace Information Report (AIR) describes the different aspects of corrosion on helicopter powerplants, on the components that are affected, and the subsequent consequences on the helicopter, engine durability, performance, and dependability. Guidelines that minimize corrosion during the design stage and during service operation are also discussed.
Standard

Turbine Drive Shaft Connection

2023-01-20
CURRENT
ARP721
This ARP applies to turbine engines that are to be used in helicopters. It provides the engine designer guide lines in achieving a satisfactory turbine engine drive shaft connection.
Standard

Helicopter Engine/Airframe Interface Document and Checklist

2022-06-27
CURRENT
ARP1507B
This SAE Aerospace Recommended Practice (ARP) provides a guide for the preparation of a helicopter engine/airframe interface document and checklist. This document and checklist should identify the information needed by the engine manufacturer and the aircraft manufacturer to integrate the engine design with the aircraft design and either provide this information or give reference to where this information is located. The intent is to assure that the engine manufacturer and the airframe manufacturer identify and make provision for this information so it can be easily accessible to either manufacturer as needed in the development stages of an engine-airframe integration project.
Standard

Cockpit Information Required for Helicopter Turbine Engine Operation and Maintenance

2022-03-29
WIP
AIR1963B
This SAE Aerospace Information Report (AIR) identifies Propulsion EngineerÕs recommendations for the instrumentation that is required for the safe operation and maintenance of turbine engines as installed in helicopters. It should be used as a guide for cockpit layout, as well as a reference for maintenance considerations throughout the propulsion area. Propulsion instruments should receive attention early in the design phase of the helicopter. Maintenance and diagnostics recorders are not considered within the scope of this document. (See ARP1587, "Aircraft Gas Turbine Engine Monitoring System Guide".)
Standard

Helicopter Mission Definition

2022-02-23
WIP
ARP1352A
The purpose of this recommended practice is to establish a standard format for the presentation of helicopter mission data, which will provide data required to establish airframe and/or engine component life.
Standard

Oil Systems for Helicopter Powerplants

2022-01-13
WIP
AIR4281A
Turbine engines installed in helicopters require a highly sophisticated oil system to fulfill two tasks: a. Cooling/oil supply b. Lubrication. While lubrication is an engine internal procedure, cooling and oil supply require more or less design activity on the aircraft side of the engine/airframe interface for proper engine function, depending on the engine type. The necessity for engine cooling and oil supply provisions on the airframe can lead to interface problems because the helicopter manufacturer can influence engine related functions due to the design of corresponding oil system components. This SAE Aerospace Information Report (AIR) deals with integration of engine oil systems with the airframe and gives information for both helicopter and engine manufacturers for a better understanding of interface requirements.
Standard

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

2021-10-01
CURRENT
ARP1702B
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter powerplants. These factors are installation losses, accessory power extraction, and operational effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the RFM. It is intended that the methods presented herein prescribe and define each factor as well as an approach to measuring said factor. Only basic installations of turboshaft engines in helicopters are considered. Although the methods described may apply in principle to other configurations that lead to more complex installation losses, such as an inlet particle separator, inlet barrier filter (with or without a bypass system), or infrared suppressor, specialized or individual techniques may be required in these cases for the determination and definition of engine installation losses.
Standard

EVALUATION OF HELICOPTER TURBINE ENGINE LINEAR VIBRATION ENVIRONMENT

2021-03-11
CURRENT
AIR1289A
This SAE Aerospace Information Report (AIR) outlines a recommended procedure for evaluation of the vibration environment to which the gas turbine engine powerplant is subjected in the helicopter installation. This analysis of engine vibration is normally demonstrated on a one-time basis upon initial certification, or after a major modification, of an engine/helicopter configuration. This AIR deals with linear vibration as measured on the basic case structure of the engine and not, for example, torsional vibration in drive shafting or vibration of a component within the engine such as a compressor or turbine airfoil. In summary, this AIR discusses the engine manufacturer’s "Installation Test Code" aspects of engine vibration and proposes an appropriate measurement method.
Standard

HELICOPTER TURBINE ENGINE WASH

2020-01-31
CURRENT
AIR4416
Engines subject to dust, industrial pollution, saltwater contamination or other chemically laden atmosphere (including pesticides and herbicides) lose performance due to deposits of contaminants on surfaces in the aidgas flow path. Engine wash and engine rinse procedures are utilized to restore turbine engine performance. These procedures are generated by the engine manufacturer and are included in the Engine Maintenance/Service Manuals. For most turbine engines these procedures are similar in concept and practice; however, application details, choice of solvents and many other service features can vary from engine manufacturer to engine manufacturer and may even vary within the range of engine models produced by any manufacturer.
Standard

HELICOPTER ENGINE MOUNTING

2020-01-31
CURRENT
AIR4172
This Aerospace Information Report (AIR) reviews the requirements to be satisfied by the engine mount systems and provides an outline of some suitable methods. Factors such as drive shaft alignment, engine expansion, mount crashworthiness, vibration isolation, and other effects on the installation are discussed.
Standard

Performance of Low Pressure Ratio Ejectors for Engine Nacelle Cooling

1999-03-01
CURRENT
AIR1191A
A general method for the preliminary design of a single, straight-sided, low subsonic ejector is presented. The method is based on the information presented in References 1, 2, 3, and 4, and utilizes analytical and empirical data for the sizing of the ejector mixing duct diameter and flow length. The low subsonic restriction applies because compressibility effects were not included in the development of the basic design equations. The equations are restricted to applications where Mach numbers within the ejector primary or secondary flow paths are equal to or less than 0.3.
Standard

Oil Systems for Helicopter Powerplants

1998-11-01
CURRENT
AIR4281
Turbine engines installed in helicopters require a highly sophisticated oil system to fulfill two tasks: a Cooling/oil supply b Lubrication While lubrication is an engine internal procedure, cooling and oil supply require more or less design activity on the aircraft side of the engine/airframe interface for proper engine function, depending on the engine type. The necessity for engine cooling and oil supply provisions on the airframe can lead to interface problems because the helicopter manufacturer can influence engine related functions due to the design of corresponding oil system components. This SAE Aerospace Information Report (AIR) deals with integration of engine oil systems with the airframe and gives information for both helicopter and engine manufacturers for a better understanding of interface requirements.
Standard

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

1998-09-01
HISTORICAL
ARP1702A
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter power plants. These factors are installation losses, accessory power extraction, and operation effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the flight manual. It is intended that the methods herein prescribe and define each factor as well as an approach to measuring said factor. Only standard installations of turboshaft engines in helicopters are considered. Special arrangements leading to high installation losses, such as the fitting of an infrared suppressor may require individual techniques for the determination and definition of engine installation losses.
Standard

Engine Erosion Protection

1998-02-01
CURRENT
AIR947
This Aerospace Information Report deals with protection of helicopter aircraft engines against erosion. Applicability is restricted to aircraft having a disc loading of less than 15 pounds per square foot.
Standard

Helicopter Mission Definition

1997-12-01
CURRENT
ARP1352
The purpose of this recommended practice is to establish a standard format for the presentation of helicopter mission data, which will provide data required to establish airframe and/or engine component life.
Standard

Cockpit Information Required for Helicopter Turbine Engine Operation and Maintenance

1997-06-01
CURRENT
AIR1963A
This SAE Aerospace Information Report (AIR) identifies Propulsion Engineer’s recommendations for the instrumentation that is required for the safe operation and maintenance of turbine engines as installed in helicopters. It should be used as a guide for cockpit layout, as well as a reference for maintenance considerations throughout the propulsion area. Propulsion instruments should receive attention early in the design phase of the helicopter. Maintenance and diagnostics recorders are not considered within the scope of this document. (See ARP1587, “Aircraft Gas Turbine Engine Monitoring System Guide”.)
Standard

Helicopter Engine/Airframe Interface Document and Checklist

1997-06-01
HISTORICAL
ARP1507A
This SAE Aerospace Recommended Practice (ARP) provides a guide for the preparation of a Helicopter Engine/Airframe Interface Document and Checklist. This document and checklist is intended to provide complete relevant information on the characteristics, performance, and engine interfaces. Of most importance is the identification of the data and the location of data to assure that the engine manufacturer and the airframe manufacturer supply information that can be easily located by either manufacturer.
Standard

HELICOPTER ENGINE FOREIGN OBJECT DAMAGE

1989-11-30
HISTORICAL
AIR4096
The purpose of this SAE Aerospace Information Report is to disseminate qualitative information regarding foreign object damage (FOD) to gas turbine engines used to power helicopters and to discuss methods of preventing FOD. Although turbine-powered, fixed-wing aircraft are also subject to FOD, the unique ability of the helicopter to hover above, takeoff from, and land on unprepared areas creates a special need for a separate treatment of this subject as applied to rotary-winged aircraft.
X