Refine Your Search

Topic

Search Results

Standard

Spark Arrester Test Procedure for Large Size Engines

2020-10-06
CURRENT
J342_202010
This SAE Recommended Practice establishes equipment and procedures for the evaluation of the effectiveness and other performance characteristics of spark arresters or turbochargers used on the exhaust system of large engines normally used in a railroad locomotive, stationary power plant, and other similar applications. This document does not cover applications requiring flame arresting, exhaust gas cooling, or isolation from explosive gases. Two test methods are presented: a laboratory test using ambient air (cold test) and an engine test using exhaust gases (hot test). The hot test is preferred. Arresters tested by the provisions of this document can be expected to perform as tested when tilted no more than 45 degrees from their normal position. Test results from a spark arrester or turbocharger evaluated by the hot test can be applied to different engines of similar design, provided the data shows it to be effective in the applicable flow ranges.
Standard

Flywheel Spin Test Procedure

2013-05-03
CURRENT
J1240_201305
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of spark ignition and diesel type. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 size flywheel housings.
Standard

Spark Arrester Test Procedure for Large Size Engines

2013-03-26
HISTORICAL
J342_201303
This SAE Recommended Practice establishes equipment and procedures for the evaluation of the effectiveness and other performance characteristics of spark arresters or turbochargers used on the exhaust system of large engines normally used in a railroad locomotive, stationary power plant, and other similar applications. This document does not cover applications requiring flame arresting, exhaust gas cooling, or isolation from explosive gases. Two test methods are presented: a laboratory test using ambient air (cold test) and an engine test using exhaust gases (hot test). The hot test is preferred. Arresters tested by the provisions of this document can be expected to perform as tested when tilted no more than 45 degrees from their normal position. Test results from a spark arrester or turbocharger evaluated by the hot test can be applied to different engines of similar design, provided the data shows it to be effective in the applicable flow ranges.
Standard

Overcenter Clutch Spin Test Procedure

2012-10-23
CURRENT
J1079_201210
This SAE Recommended Practice applies to driving ring type overcenter clutches such as are used in industrial power takeoffs.
Standard

Engine Flywheel Housings with Sealed Flanges

2012-10-23
CURRENT
J1172_201210
This SAE Recommended Practice defines flywheel housing flange configurations for applications requiring "O" ring sealing of the flange pilot bore. Table 1 and Figure 1 show dimensions that are different from those in SAE J617. All other dimensions and tolerances of SAE J617 apply.
Standard

Maximum Allowable Rotational Speed for Internal Combustion Engine Flywheels

2012-10-23
CURRENT
J1456_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

Flywheels for Industrial Engines Used With Industrial Power Take-Offs Equipped With Driving-Ring Type Overcenter Clutches and Engine-Mounted Marine Gears and Single Bearing Engine-Mounted Power Generators

2012-10-23
CURRENT
J620_201210
This SAE Standard defines flywheel configurations for industry standardization, interchangeability, and compatibility. Table 1 and Figure 1 give the dimensions for the flywheels. For dimensions of industrial power take-offs with driving-ring type overcenter clutches, see SAE J621. For flywheel dimensions for engine-mounted torque converters without front disconnect clutch, see SAE J927.
Standard

Industrial Power Take-Offs With Driving Ring-Type Overcenter Clutches

2012-10-23
CURRENT
J621_201210
This SAE Standard defines installation dimensions of industrial power take-offs with driving ring-type overcenter clutches. Table 1 and Figure 1 give dimensions for power take-offs. For dimensions and tolerances of power take-off flanges and flywheels, see SAE J617 and J620, respectively.
Standard

Flywheel Spin Test Procedure

2012-10-04
HISTORICAL
J1240_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of spark ignition and diesel type. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 size flywheel housings.
Standard

Procedure for Measuring Bore and Face Runout of Flywheels, Flywheel Housings, and Flywheel Housing Adapters

2012-06-01
CURRENT
J1033_201206
This SAE Recommended Practice applies to any internal combustion engine which can utilize SAE No. 6 thru SAE No. 00 size flywheel housing. It provides instructions for correcting flywheel housing bore runout readings which are influenced by crankshaft bearing clearance. Limits for bore and face runout are specified in the various SAE Standards and Recommended Practices covering flywheels and flywheel housings.
Standard

Housing Internal Dimensions for Single- and Two-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J373_201205
This SAE Recommended Practice defines the minimum internal dimensions for clutch housings to provide adequate clearance for single- and two-plate spring-loaded clutches. (See Figure 1.) Consult SAE J617 for housing flange dimensions. Consult SAE J618 and J619 for spring-loaded clutch flywheel dimensions F and G and other dimensional data. Table 1 provides housing minimum internal dimensions for single- and two-plate spring-loaded clutches.
Standard

Flywheels for Single-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J618_201205
This SAE Recommended Practice applies to flywheels for dry spring-loaded clutches used on internal combustion engines. Figure 1 and Tables 1, 2, and 3 report information currently used in the industry. Clutches requiring other dimensions are also manufactured. Dimensions given are primarily for single-plate clutches. Flywheels for two plate clutches have the same dimensions if an adaptor for the intermediate plate and second driven disc is supplied with the clutch. If instead the flywheel is to be extended to adapt the intermediate plate and second driven member, consult the clutch manufacturer for the required J dimension and drive arrangements for the intermediate plate. See SAE J1806 for flywheels for size 14 and 15.5 two plate pull-type clutches.
Standard

Flywheels for Two-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J619_201205
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for dry spring-loaded clutches. Clutches to fit flywheels with configurations per this document may not be commercially available. Availability should be ascertained prior to flywheel design Figure 1 and Table 1A.
Standard

Crankcase Emission Control Test Code

2012-01-23
CURRENT
J900_201201
The purpose of this SAE STandard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a. The flow rate of the blowby of an engine; b. The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology; 4. Test Equipment; 5. Test Procedures; 6. Information and Data to be Recorded; 7. Data Analysis; 8. Presentation of Information and Data.
Standard

Engine Terminology and Nomenclature - General

2011-08-05
CURRENT
J604_201108
This SAE Recommended Practice is applicable to all types of reciprocating engines including two-stroke cycle and free piston engines, and was prepared to facilitate clear understanding and promote uniformity in nomenclature. Modifying adjectives in some cases were omitted for simplicity. However, it is good practice to use adjectives when they add to clarity and understanding.
Standard

Instrumentation and Techniques for Exhaust Gas Emissions Measurement

2011-06-10
CURRENT
J254_201106
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). A complete procedure for testing vehicles may be found in SAE J1094. This document includes the following sections: 1. Scope 2. References 3. Emissions Sampling Systems 4. Emissions Analyzers 5. Data Analysis 6. Associated Test Equipment 7. Test Procedures
Standard

Sleeve Type Half Bearings

2011-06-10
CURRENT
J506_201106
This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.
Standard

Guide to the Application and Use of Engine Coolant Pump Face Seals

2000-11-07
HISTORICAL
J1245_200011
This SAE Recommended Practice is intended as a guide in the usage of mechanical face seals for the engine coolant pump application. The main purpose of the document is to fill the void caused by the lack of a ready source of practical information on the design and use of the engine coolant pump face seal. Included in the document is a compilation of present practices, as in a description of the various types of seals, material combinations, design data, tolerances, drawing format, qualification and inspection information, and quality control data. The terminology used throughout the document is recommended and, through common usage, is hoped to promote uniformity in seal nomenclature.
Standard

Manual Transmission and Transaxle Efficiency and Parasitic Loss Measurement

1999-08-30
HISTORICAL
J2453_199908
Because of the intense focus on CAFE and fuel emission standards, optimization of the automobile drivetrain is imperative. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies the dynamometer test procedure which maps a manual transmission’s efficiency. The document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine “in-gear” transmission efficiency. The second procedure measures parasitic losses experienced while in neutral at nominal idling speeds and also churning losses while in gear. The application of this document is intended for passenger car and light truck. All references to transmissions throughout this document include transaxles.
X