Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Effect of Injection Timing Retard on ISI Strategy in Lean-burning LPG Direct Injection Engines

2013-10-14
2013-01-2636
Because of the concerns regarding global warming caused by greenhouse gases and the high cost of fossil fuels, research on improving the fuel economy and emissions in internal combustion engines has become important. Specifically for spark ignition engines, lean-burning direct injection is the most promising technology because the fuel economy and emissions can be improved using a stable combustion of a stratified mixture. This study aimed to develop a spray-guided, lean-burning liquefied petroleum gas (LPG) direct injection engine through optimizing the combustion parameter controls. In previous research, the brake thermal efficiency in an LPG direct injection engine was significantly increased and stable combustion was secured with an interinjection spark ignition (ISI) strategy under low-load operating conditions.
Technical Paper

Comparative Study on Effect of Intake Pressure on Diesel and Biodiesel Low Temperature Combustion Characteristics in a Compression Ignition Engine

2013-10-14
2013-01-2533
Owing to the presence of oxygen atoms in biodiesel, the use of this fuel in compression ignition (CI) engines has the advantage of reducing engine-out harmful emissions. In this context, biodiesel fuel can also be used to extend the low temperature combustion (LTC) regime because it inherently suppresses soot formation within the combustion chamber. Therefore, in this study, LTC characteristics of biodiesel were investigated in a single cylinder CI engine; the engine performance and emission characteristics with biodiesel and conventional petro-diesel fuels were evaluated and compared. A modulated kinetics (MK)-like approach was employed to realize LTC operation. The engine test results showed that LTC operation was achieved by retardation of the fuel injection timing. The results also showed that using biodiesel reduced smoke, THC, and CO emissions but increased NOx emissions.
Technical Paper

Simulation of a Heavy Duty Diesel Engine Fueled with Soybean Biodiesel Blends in Low Temperature Combustion

2013-04-08
2013-01-1100
Low temperature combustion (LTC) may allow simultaneous reduction of nitrogen oxides (NOx) and soot with acceptable compromise in the efficiency of a diesel engine. Recently oxygenate biodiesel fuels were tested to resolve the problem of CO emission at higher exhaust gas recirculation (EGR) rates in LTC operation. In this paper 3-D simulation is performed by KIVA with soybean biodiesel blends of D100 and BD20 for a heavy duty test engine. The oxygen fraction in intake gas is controlled between 7% and 19% to simulate EGR in LTC operation. A surrogate mechanism is constructed by combining the skeletal mechanisms of methyl butanoate (MB) and n-heptane for low and high temperature chemistry. It consists of 76 species and 243 reaction steps with detailed NOx chemistry. The conditional moment closure (CMC) model is employed to address coupling between turbulence and chemistry.
Technical Paper

Emission Characteristics of Gasoline and LPG in a Spray-Guided-Type Direct Injection Engine

2013-04-08
2013-01-1323
Nowadays, automobile manufacturers are focusing on reducing exhaust-gas emissions because of their harmful effects on humans and the environment, such as global warming due to greenhouse gases. Direct injection combustion is a promising technology that can significantly improve fuel economy compared to conventional port fuel injection spark ignition engines. However, previous studies indicate that relatively high levels of nitrogen oxide (NOx) emission were produced with gasoline fuel in a spray-guided-type combustion system as a result of the stratified combustion characteristics. Because a lean-burn engine cannot employ a three-way catalyst, NOx emissions can be an obstacle to commercializing a lean-burn direct injection engine. Liquefied petroleum gas (LPG) fuel was proposed as an alternative for reducing NOx emission because it has a higher vapor pressure than gasoline and decreases the local rich mixture region as a result of an improved mixing process.
Technical Paper

Combustion and Emission Characteristics in a Direct Injection LPG/Gasoline Spark Ignition Engine

2010-05-05
2010-01-1461
Combustion and emission characteristics of LPG(Liquefied Petroleum Gas) and gasoline fuels were compared in a single cylinder engine with direct fuel injection. While fuel injection pressure and IMEP(indicated mean effective pressure) were varied with 60, 90, 120 bar and 2 to 10 bar, another parameters for the engine operation as engine speed, air excess, and fuel injection timing were fixed at 1500 rpm, 1.0, and BTDC 300 CA respectively. Experimental results showed that MBT timing for LPG was less sensitive to IMEP, and high injection pressure made combustion stability worse at IMEP=2 bar. Through heat release analysis LPG showed shorter 10 and 90% MBD(mass burn duration) than gasoline due to fast flame speed and for both fuels injection pressure hardly affected burn duration. It was also found that thermal efficiency of LPG had a little higher than that of gasoline. Hydrocarbon emissions of gasoline rose to a level of three-fold than those of LPG.
Journal Article

Improvement of DME HCCI Engine Performance by Fuel Injection Strategies and EGR

2008-06-23
2008-01-1659
The combustion and exhaust emission characteristics of a DME fueled HCCI engine were investigated. Different fuel injection strategies were tested under various injection quantities and timings with exhaust gas recirculation (EGR). The combustion phase in HCCI was changed by an in-cylinder direct injection and EGR, due to changes in the in-cylinder temperature and mixture homogeneity. The gross indicated mean effective pressure (IMEPgross) increased and the hydrocarbon (HC) and carbon monoxide (CO) emissions decreased as the equivalence ratio was augmented. The IMEPgross with direct injection was greater than with the port injection due to retarded ignition timing resulting from latent heat of direct injected DME fuel. It was because that most of burn duration was completed before top dead center owing to higher ignitability for DME with high cetane number. However, HC and CO emissions were similar for both injection locations.
Technical Paper

Effects of Stratified EGR on the Performance of a Liquid Phase LPG Injection Engine

2004-03-08
2004-01-0982
Exhaust gas recirculation (EGR) and lean burn utilize the diluents into the engine cylinder to control combustion leading to enhanced fuel economy and reduced emissions. However, the occurrence of excessive cyclic variation with high diluent rates, brings about an undesirable combustion instability within the engine cylinder resulting in the deterioration of both engine performance and emissions. Proper stratification of mixture and diluents could improve the combustion stability under high diluent environment. EGR stratification within the cylinder was made by adopting a fast-response solenoid valve in the midst of EGR line and controlling its timing and duty. With EGR in both homogeneous mode and stratified mode, in-cylinder pressure and emissions were measured. The thermodynamic heat release analysis showed that the burning duration was decreased in case of stratified EGR. It was found that the stratification of EGR hardly affected the emissions.
Technical Paper

Fuel Stratification in a Liquid-Phase LPG Injection Engine

2003-05-19
2003-01-1777
To investigate the mixture distributions in an LPG engine with Liquid phase port injection for heavy duty vehicles, an optical single cylinder engine, which is optically accessible both in side and bottom view, and laser diagnostic system were incorporated to apply PLIF (planar laser induced fluorescence) technique. Acetone was used as a dopant in LPG fuel, which was excited by KrF excimer laser (248nm), and its fluorescence images were acquired with ICCD camera. The effects of fuel injection timing, swirl intensity and excess air ratio were investigated. For the case of open valve injection, favorable stratification of fuel, both in axial and radial direction, was clearly observed compared to the closed valve injection, where reverse stratification in axial direction was observed. At the Ricardo swirl ratio of 3.4, it was apparent that excessive axial stratification of fuel got dominant, which would lead to poor engine performances.
Technical Paper

Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine

2003-05-19
2003-01-1919
A liquid phase LPG injection (LPLi) system has been considered as one of the next generation fuel supply system, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type that is classified as a second generation technology, whereas the LPLi system is classified as a third generation technology. However, when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to its high latent heat of evaporation. This leads the moisture in the air to freeze around the nozzle exit, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that humidity of air rather than the temperature of air in the inlet duct mainly controlled the icing process.
Technical Paper

Flame Propagation Characteristics in a Heavy Duty LPG Engine with Liquid Phase Port Injection

2002-05-06
2002-01-1736
Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean burn operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean burn performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using a UV intensified high-speed CCD camera. Concepts of flame area speed, in addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics.
Technical Paper

Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles

2002-03-04
2002-01-0449
An LPG engine for heavy duty vehicles has been developed using liquid phase LPG injection (hereafter LPLI) system, which has regarded as as one of next generation LPG fuel supply systems. In this work the optimized piston cavities were investigated and chosen for an LPLI engine system. While the mass production of piston cavities is considered, three piston cavities were tested: Dog-dish type, bathtub type and top-land-cut bathtub type. From the experiments the bathtub type showed the extension of lean limit while achieving the stable combustion, compared to the dog-dish type at the same injection timing. Throughout CFD analysis, it was revealed that the extension of lean limit was due to an increase of turbulence intensity by the enlarged crevice area, and the enlargement of flame front surface owing to the shape of the bathtub piston cavity compared to that of the dog-dish type.
Technical Paper

Performance of an Liquid Phase LPG Injection Engine for Heavy duty Vehicles

2001-05-07
2001-01-1958
A LPG engine for heavy duty vehicle has been developed using liquid phase LPG injection (hereafter LPLI) system, which has a strong potential as a next generation LPG fuel supply system. It has been revealed in this work that an LPLI system generates higher power, efficiency, and emits lower emission pollutants than the conventional mixer type system. As a preliminary study on the LPLI system applicable to a heavy duty LPG engine, the engine output and combustion performance were investigated with various operating conditions using a single cylinder engine equipped with the different fuel supply systems. Experimental results showed that no problems occurred and the volumetric efficiency and engine output increased, respectively by about 10%, when the LPLI system is used. A decrease of the intake manifold temperature by the LPLI system has also been observed.
X