Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Methodology of Lubricity Evaluation for DME Fuel based on HFRR

2011-11-08
2011-32-0651
The methodology of lubricity evaluation for DME fuel was established by special modified HFRR (High-Frequency Reciprocating Rig) such as Multi-Pressure/Temperature HFRR (MPT-HFRR). The obtained results were summarized as follows: The HFRR method is adaptable with DME fuel. There is no effect of the test pressure (up to 1.8 MPa) and the test temperature (up to 100°C) of MPT-HFRR on wear scar diameter. The results with MPT-HFRR can be applied at the sliding parts of the injection needle and the fuel supply pump's plungers which are secured lubricity by the boundary lubrication mode mainly and the mixed lubrication mode partially. Using the fatty-acid-based lubricity improver in amounts of approximately 100 ppm, the lubricity of DME, which has a lack of self-lubricity, is ensured as same as the diesel fuel equivalent level. There is a big deviation of measured wear scar diameter when the LI concentration is not enough.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

Study on Improvement of Combustion and Effect of Fuel Property in Advanced Diesel Engine

2010-04-12
2010-01-1117
The tasks to improve diesel emissions and fuel consumption must be accomplished with urgency. However, due to the trade-off relationship between NOx emissions, soot emissions and fuel consumption, clean diesel combustion should be achieved by both innovative combustion and fuel technologies. The objective of this study is to extend the clean diesel combustion operating range (Engine-out emission: NOx ≺ 0.2 g/kWh, Soot ≺ 0.02 g/kWh). In this study, performance of a single-cylinder test engine equipped with a hydraulic valve actuation system and an ultra-high pressure fuel injection system was investigated. Also evaluated, were the effects of fuel properties such as auto-ignitability, volatility and aromatic hydrocarbon components, on combustion performance. The results show that applying a high EGR (Exhaust gas recirculation) rate can significantly reduce NOx emission with an increase in soot emission.
Technical Paper

A Study of Fuel Auto-ignitability on Premixed Compression Ignition Characteristics

2008-04-14
2008-01-0062
It has been clarified that diesel fuel properties have a great effect on the exhaust emissions and fuel consumption of a conventional diesel combustion regime. And as other diesel combustion regimes are applied in order to improve exhaust emissions and fuel consumption, it can be supposed that the fuel properties also have significant effects. The purpose of this study is to propose the optimum diesel fuel properties for a premixed compression ignition (PCI) combustion regime. In this paper, the effect of the auto-ignitability of diesel fuels on exhaust emissions and fuel consumption was evaluated using a heavy-duty single-cylinder test engine. In all experiments, fuels were injected using an electronically controlled, common-rail diesel fuel injector, and most experiments were conducted under high EGR conditions in order to reduce NOx emissions.
Technical Paper

Evaluation of Medium Duty DME Truck Performance -Field Test Results and PM Characteristics-

2007-01-23
2007-01-0032
The performance of a medium duty DME truck was evaluated by field tests and engine bench tests. The DME vehicle was given a public license plate on October 2004, after which running tests were continued on public roads and a test course. The DME vehicle could run the whole distance, about 500 km, without refueling. The average diesel equivalent fuel consumption of the fully loaded DME truck was 5.75 km/l, running at 80 km/h on public highways. Remedying several malfunctions that occurred in the power-train subsystems enhanced the vehicle performance and operation. The DME vehicle accumulated 13,000 km as of August, 2006 with no observed durability trouble of the fuel injection pump. Disassembly and inspection of the fuel injectors after 7,700 km operation revealed a few differences in the nozzle tip and the needle compared to diesel fuel operation. However, the injectors were used again after cleanup.
Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

2007-01-23
2007-01-0028
In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

Studies of Fuel Properties and Oxidation Stability of Biodiesel Fuel

2007-01-23
2007-01-0073
Biodiesel fuel has attracted much attention as a carbon neutral fuel because it is made from vegetable oil. Especially in Southeast Asia, there are numerous biofuel resources, such as palm oil and coconut oil, and it is desirable to utilize these for CO2 reduction. In this paper, we evaluate the properties of biodiesel fuel and biodiesel blended diesel oil. The low temperature performance of palm oil methyl ester (PME) is poor and it affects low temperature performance, even if the PME blending rate is low. The oxidation stability is a very important property of biodiesel fuel because degraded biodiesel fuel produces organic acids and polymeric substances. PME contains mainly saturated fatty acids methyl esters, so the oxidation stability is better than other fats and oils. When containing antioxidants such as beta carotene, biodiesel's oxidation stability is improved.
Technical Paper

Characteristics of Aldehydes and VOCs Emission from Off-road Engines

2006-11-13
2006-32-0023
In this study, measurement methods of aldehydes and volatile organic compounds (VOCs) from off-road engine have been investigated. Also, their emission characteristics have been evaluated. By using high-performance liquid chromatograph (HPLC), aldehydes could be measured with small variation. Major aldehydes from off-road engine are formaldehyde and acetaldehyde. Total aldehydes emission is not necessarily low compared to THC emission. The emission characteristics of aldehydes are similar to that of CO, THC and PM. For VOCs sampling, sampling tube with absorbent was better than sampling bag because some kinds of VOCs tend to become absorbed on the sampling bag. Except for 1,3-butadiene, VOCs could be measured with small variation by using gas chromatography-mass spectrometer (GC-MS). Benzene, toluene and xylene were major species found in VOCs. The emission characteristics of VOCs were also similar to ones of CO, THC and PM.
Technical Paper

Japanese Standards for Diesel Fuel Containing 5% FAME: Investigation of Acid Generation in FAME Blended Diesel Fuels and Its Impact on Corrosion

2006-10-16
2006-01-3303
The Agency of Natural Resources and Energy, Ministry of Economy, Trade and Industry has conducted conformity tests of diesel fuel containing Fatty Acid Methyl Ester (FAME) to amend diesel fuel standards in Japan. The objective of the tests is to examine appropriate specifications of diesel fuel containing FAME for automotive use for existing vehicles in the Japanese market. The conformity testing includes verification of fuel system component compatibility, tail pipe emissions, and characterization of the reliability and durability of the engine system, including the fuel injection system. In designing the conformity tests, the maximum FAME concentration was 5%. Most of the new standards are essentially equivalent to EN14214, but the total acid number (TAN) of specific acids, and oxidation stability of the new standards for diesel fuel containing FAME, are different from EN14214.
Technical Paper

Research and Development of a Medium Duty DME Truck

2005-05-11
2005-01-2194
Dimethyl ether (DME) has been attracting notable attention as a clean alternative fuel for diesel engines. The authors developed a medium duty DME truck, and investigated aspects of vehicle performance such as engine power, exhaust characteristics, fuel consumption, noise, in-vehicle systems, and so on. Results indicated that higher engine torque and power could be achieved with DME compared to diesel fuel operation of the base engine at any engine speed. Results also showed that emissions decreased dramatically, to 27% for NOx, 74% for HC, 95% for CO and 94% for PM (Particulate Matter) compared to maximum allowed Japanese 2003 emission regulations. The operating noise of the DME vehicle was slightly lower than the base vehicle with diesel fuel, because the combustion noise with DME was decreased compared to with diesel fuel operation. The DME vehicle was given a public license plate in October 2004, after which running test continued on public roads and on a test course.
Technical Paper

Measurement of Trace Levels of Harmful Substances Emitted from a DME DI Diesel Engine

2005-05-11
2005-01-2202
In this report, trace levels of harmful substances, such as formaldehyde, acetaldehyde, SO2, benzene and so on, emitted from a DME fueled direct injection (DI) compression ignition (CI) engine were measured using a Fourier Transform Infrared (FTIR) emission analyzer. Results showed that the NO portion of NOx emissions with DME exceeded diesel fuel operation levels. DME fueling caused greater amounts of water than with diesel fuel operation. DME fueling was also associated with higher formaldehyde emissions than with diesel fuel operation. However, using an oxidation catalyst, formaldehyde could be decreased to a negligible level.
Technical Paper

Lubricity of Liquefied Gas Assessment of Multi-Pressure/Temperature High-Frequency Reciprocating Rig (MPT-HFRR) -DME Fuel for Diesel

2004-06-08
2004-01-1865
In this study, a MPT-HFRR (Multi-Pressure/Temperature High-Frequency Reciprocating Rig) was manufactured based on a diesel fuel lubricity test apparatus. The MPT-HFRR was designed to be used for conventional test methods as well as for liquefied gas fuel tests. Lubricity tests performed on a calibration standard sample under both atmospheric pressure and high pressure produced essentially constant values, so it was determined that this apparatus could be used for assessing the lubricity of fuel. Using this apparatus, the improvement of lubricity due to the addition of a DME (Dimethyl Ether) fuel additive was investigated. It was found that when 50ppm or more of a fatty acid lubricity improver was added, the wear scar diameter converged to 400μm or less, and a value close to the measured result for Diesel fuel was obtained. The lubricity obtained was considered to be generally satisfactory.
Technical Paper

Engine Performance and Emission Characteristics of DME Diesel Engine With Inline Injection Pump Developed for DME

2004-06-08
2004-01-1863
The engine performance and exhaust characteristics of the DME-powered diesel engine with an injection system developed for DME were investigated. The injection pump is an inline type that can inject double amount of DME fuel compared to the base injection pump because the calorific value of DME is about half lower than that of diesel fuel. The effect of injection timing on engine performances such as thermal efficiency, engine torque, and exhaust characteristics were investigated. Maximum torque and power with DME could be achieved the same or greater level compared to diesel fuel operation. Considering over all engine performances, the best dynamic injection timings without EGR were -3, -3, -6 and -9 deg. ATDC in 1120, 1680, 2240 and 2800 rpm engine speeds respectively in this experiment.
Technical Paper

Fuel Characteristics Evaluation of GTL for DI Diesel Engine

2004-03-08
2004-01-0088
In this study, advantages of GTL fueled DI diesel engine were observed, then, some cautionary areas, notably the aptitude for sealing materials, were investigated. Some advantages of using GTL as a diesel engine fuel include reduction of soot emission levels, power output and fuel consumption with GTL to conventional diesel fuel operation is equivalent, super-low sulfur content of GTL and its liquid state at normal temperature and pressure. However, there are some problems with putting GTL fuel on the market, such as lubricity, aptitude for sealing materials, high cetane index and high pour point. It is necessary to use additives to improve GTL's lubricity, and selecting the most appropriate type of lubricity improver is also important. The influence of GTL on the swelling properties of standard rubber materials seem basically the same, but it is necessary to notice on used rubbers.
Technical Paper

Spectroscopic Analysis of Combustion in the DME Diesel Engine

2004-03-08
2004-01-0089
For better understanding of the combustion characteristics in a direct injection dimethyl ether (DME) engine, the chemiluminescences of a burner flame and in-cylinder flame were analyzed using the spectroscopic method. The emission intensities of chemiluminescences were measured by a photomultiplier after passing through a monochrome-spectrometer. For the burner flame, line spectra were found nearby the wave length of 310 nm, 430 nm and 515 nm, arising from OH, CH and C2 radicals, respectively. For the in-cylinder flame, a strong continuous spectrum was found from 340 nm wave length to 550 nm. Line spectra were also detected nearby 310 nm, 395 nm and 430 nm, arising from OH, HCHO, and C2 radicals, respectively, partially overlapping with the continuous spectrum. Of these line spectra, 310 nm of OH radical did not overlapped with the continuous spectrum.
Technical Paper

Lubricity of Liquefied Gas - Assessment of the Various Pressure and Temperature High-Frequency Reciprocating Rig (VPT-HFRR) - LPG Blended Fuel for Diesel Engine

2003-10-27
2003-01-3092
In this research, a test apparatus (VPT-HFRR) for evaluating lubricity was manufactured at an arbitrary pressure according to the lubricity test method (HFRR) for diesel fuel. The lubricity of LPG blended fuel (LBF) for diesel engines was examined using VPT-HFRR., This was a value close to that of diesel fuel, and when a suitable lubricity had been maintained, it was checked. Prototype trucks were manufactured and their durability was examined. After a run of 70,000km or more, no serious trouble had occurred, and when LBF was maintained at a suitable lubricity, it was checked.
Technical Paper

Effects of Fuel Injection Conditions on Driving Performance of a DME Diesel Vehicle

2003-10-27
2003-01-3193
Since dimethyl ether (DME) is a synthetic fuel, it is possible to make it from natural gas, coal and biomass. It is a low-emission, oxygenated fuel, which does not generate soot in the exhaust. Therefore, it has recently been identified as a possible replacement for diesel fuel. In Japan, the new short-term emissions regulations will be enforced beginning in 2003, and the long-term emissions regulations are scheduled to be enforced in 2005. In order to meet these more stringent emissions regulations, existing diesel engines would not be as widely used in the near future as they currently are. This will thus bring about a more widespread use of DME engines due to their low emissions potential. Moreover, when the modification of existing diesel engines into DME engines is available at a moderate cost, the wider use of DME engines can be expected. This study targeted development and application of DME engine technology for diesel engine retrofit, in a used diesel vehicle.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

Performance and Emissions of a DI diesel engine Operated with LPG and Cetane Enhancing additives

2003-05-19
2003-01-1920
Experiments were conducted to operate a direct injection (DI) diesel engine by using Liquefied Petroleum Gas (LPG) as a main fuel. Aliphatic Hydrocarbon (AH), cetane enhancing additive and lubricating additive were also added to the LPG so that smooth operation was achieved with a wide range of engine loads. Since the lubricity of LPG is lower than the diesel fuel therefore lubricating additive was employed to enhance the lubricity of LPG blended fuel. Furthermore, prototype LPG diesel truck was developed in this work, and the mileage reached about 70,000 km without any major failure. Prototype truck has good starting, good drive-off, acceleration and braking characteristics.
Technical Paper

Experimental Investigation of Lubricity Improvement of Gas-to-liquid (GTL) Fuels with Additives for Low Sulphur Diesel Fuel

2003-05-19
2003-01-1948
In this study, lubricity improvers were added to three different GTL fuels, which were then quantified with a High Frequency Reciprocating Rig (HFRR) and compared with ultra low sulphur diesel fuel (ULS). Furthermore, the lubricity of mixtures of a GTL blended with ULS was also investigated. Two kinds of compounds were tested as lubricity improvers: unsaturated fatty acids (UFA-type) and partial UFA esters of glycerin (Ester-type). All GTL fuels showed less sensitivity to a lubricity additive than ULS did, but the ULS mixture had better than expected lubricity. Thus it was concluded that blending of GTLs with ULS can be regarded as one practical measure to sufficiently improve lubricity. HFRR tests performed under the same viscosity suggested that fuel composition had an important effect on its sensitivity to an additive, as well as viscosity.
X