Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Regional Finite Element Model of the Neck for Bilateral Carotid Artery Injury Assessment in Far Side Crash Configuration

2009-06-09
2009-01-2265
Carotid artery injury due to motor vehicle crash has been attributed to direct impact to the neck and stretching of the artery. This study examines the response of a finite element model of the neck and carotid arteries given a farside vehicle impact. This regional carotid artery model was developed using existing material properties and based on a spine model developed by NHTSA. The finite element model was subjected to loading conditions derived from farside PMHS tests conducted at Medical College of Wisconsin. The PMHS tests represented four inboard belt loading conditions of the neck. The belts were located high on the neck, for maximal compression of the vessel, or low on the neck, for maximal excursion of the head. There was a low speed and a high speed test for each of the belt configurations. These boundary conditions were implemented in the model and the response of the carotid was quantified using strain measurements.
Technical Paper

Dynamic Biaxial Tissue Properties of Pregnant Porcine Uterine Tissue

2008-11-03
2008-22-0007
Automobile crashes are the largest single cause of death for pregnant females and the leading cause of traumatic fetal injury mortality in the United States. Current research for pregnant occupant safety utilizing computational models is limited by available pregnant tissue data. The purpose of this study is to collect experimental data from biaxial tissue tests on pregnant uterine tissue at a dynamic rate. Experimental tests were completed on pregnant porcine uterus which was chosen as a surrogate for the human pregnant uterus given its similarity and availability. Biaxial dynamic tensile tests were performed using a custom-designed system of linear motors to pull a cruciform-shaped specimen in tension simultaneously with four tissue clamps. The test series included 23 tests with corresponding peak stress and strain measurements of the central region of the specimen where optical markers tracked local displacements.
Technical Paper

The Influence of Arm Position on Thoracic Response in Side Impacts

2008-11-03
2008-22-0016
The purpose of this study was to investigate the influence of arm position on thoracic response and injury severity in side impacts. A total of sixteen non-destructive side impact tests and four destructive side impact tests were preformed using four human male cadavers. Single-axis strain gages were placed on the lateral and posterior regions of ribs three through eight on the impacted side, and the lateral region of ribs three through eight on the non-impacted side. Thoracic rods attached to ribs five, seven, and nine were used to measure lateral rib deflection. For the non-destructive tests, four test conditions with different arm positions were evaluated for each cadaver by performing displacement-controlled, low-energy, lateral impacts, 16 kg at 3 m/s, with a pneumatic impactor. The results of these tests showed that the highest average peak forces, peak rib deflections, and peak rib strains were observed when only the ribs were impacted and lowest when the shoulder was impacted.
Technical Paper

Development and Validation of a Synthetic Eye and Orbit for Estimating the Potential for Globe Rupture Due to Specific Impact Conditions

2007-10-29
2007-22-0016
The Facial and Ocular CountermeasUre Safety (FOCUS) headform is intended to aid safety equipment design in order to reduce the risk of eye and facial injuries. The purpose of this paper is to present a three part study that details the development and validation of the FOCUS synthetic eye and orbit and the corresponding eye injury criteria. The synthetic eye and orbit were designed to simulate the force-deflection response to in-situ dynamic impacts. In part I, the force-deflection response of the eye was determined based on dynamic blunt impact tests with human eyes. These data were used to validate the appropriate material for a biofidelic synthetic eye. In part II, force-deflection corridors developed from ten dynamic in-situ eye impacts were used to validate the design and material selections for the synthetic orbit assembly.
Technical Paper

Development of a Finite Element-Based Injury Metric for Pulmonary Contusion Part I: Model Development and Validation

2005-11-09
2005-22-0013
Pulmonary contusion is the most commonly identified thoracic soft tissue injury in an automobile crash and after blunt chest trauma and affects 10-17% of all trauma admissions. The mortality associated with pulmonary contusions is significant and is estimated to be 10-25%. Thus, there is a need to develop a finite element model based injury metric for pulmonary contusion for the purpose of predicting outcome. This will enable current and future finite element models of the lung to incorporate an understanding of how stress and strain may be related to contusion injuries. This study utilizes 14 impacts onto male Sprague-Dawley rats. In 5 of these tests, a calibrated weight (46 g) is dropped from a height of 44 cm directly onto the lungs of intubated, anesthetized rats in situ. Contused volume is estimated from MicroPET scans of the lung and normalized on the basis of liver uptake of 18F-FDG.
Technical Paper

Lateral and Posterior Dynamic Bending of the Mid-Shaft Femur: Fracture Risk Curves for the Adult Population

2004-11-01
2004-22-0002
The purpose of this study was to develop injury risk functions for dynamic bending of the human femur in the lateral-to-medial and posterior-to-anterior loading directions. A total of 45 experiments were performed on human cadaver femurs using a dynamic three-point drop test setup. An impactor of 9.8 kg was dropped from 2.2 m for an impact velocity of 5 m/s. Five-axis load cells measured the impactor and support loads, while an in situ strain gage measured the failure strain and subsequent strain rate. All 45 tests resulted in mid-shaft femur fractures with comminuted wedge and oblique fractures as the most common fracture patterns. In the lateral-to-medial bending tests the reaction loads were 4180 ± 764 N, and the impactor loads were 4780 ± 792 N. In the posterior-to-anterior bending tests the reaction loads were 3780 ± 930 N, and the impactor loads were 4310 ± 1040 N. The difference between the sum of the reaction forces and the applied load is due to inertial effects.
Technical Paper

Upper Extremity Interaction With a Helicopter Side Airbag: Injury Criteria for Dynamic Hyperextension of the Female Elbow Joint

2004-11-01
2004-22-0007
This paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5th percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries.
Technical Paper

A Nonlinear Finite Element Model of the Eye With Experimental Validation for the Prediction of Globe Rupture

2002-11-11
2002-22-0005
Over 2.4 million eye injuries occur each year in the US, with over 30,000 patients left blind as a result of the trauma. The majority of these injuries occur in automobile crashes, military operations and sporting activities. This paper presents a nonlinear finite element model of the eye and the results of 22 experiments using human eyes to validate for globe rupture injury prediction. The model of the human eye consists of the cornea, sclera, lens, ciliary body, zonules, aqueous humor and vitreous body. Lagrangian membrane elements are used for the cornea and sclera, Lagrangian bricks for the lens, ciliary, and zonules, and Eulerian brick elements comprise the aqueous and vitreous. Nonlinear, isotropic material properties of the sclera and cornea were gathered from uniaxial tensile strip tests performed up to rupture. Dynamic modeling was performed using LS-Dyna.
Technical Paper

Fracture Tolerance of the Small Female Elbow Joint in Compression: The Effect of Load Angle Relative to the Long Axis of the Forearm

2002-11-11
2002-22-0010
The purpose of this study was to develop a fracture tolerance for the elbow joint, or proximal ends of the ulna and radius, relative to the fracture risk under side-impact airbag loading. Forty experiments were performed on the elbow joints of small female cadavers. The energy source, a pneumatic impactor, was configured to apply compressive loads that match the onset rate, peak force, and momentum transfer of previously conducted side-impact airbag tests with small female subjects. Three initial orientations of the impact load angle relative to the longitudinal axis of the forearm were selected based on analysis of side-impact airbag tests with the instrumented dummy upper extremity. These included loading directions that are 0°, 20°, and 30° superior of the longitudinal axis of the forearm. Post-test necropsy revealed that 11 of the 40 tests resulted in chondral, osteochondral, or comminuted fractures of the proximal radial head or the distal trochlear notch.
Technical Paper

Investigation of Ocular Injuries from High Velocity Objects in an Automobile Collision

2002-03-04
2002-01-0027
The purpose of this study was to investigate ocular injuries from high velocity objects projected during an automobile collision. A computational model of the human eye was developed that included ocular structures such as the orbital fatty tissue, extraocular muscles and bony orbit. In order to validate the model, the results predicted by the model were compared to those previously found experimentally. In these experiments, porcine eyes were impacted with foam particles representative of those released during the deployment of an airbag through a seamless module cover. After simulating the identical experimental conditions, the results predicted by the model were in agreement with those found experimentally. A parametric study was conducted to determine the effect of these anatomical boundary conditions. Using MADYMO, a glass particle was projected into the eye. With the fatty tissue and muscles in place, a maximum Von Mises stress of 12.8 MPa occurred in the cornea.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

A Discussion of the Air Bag System and Review of Induced Injuries

1996-02-01
960658
The air bag system is described in terms of four basic elements: the crash sensors and controls, the inflator, the air bag itself, and the diagnostic circuitry. A general discussion of these elements is provided and a review of air bag related injuries is also presented which includes data from various sources such as the University of Michigan Transportation Research Institute, National Highway Traffic and Safety Administration, Transport Canada, and the Insurance Institute for Highway Safety. The most frequently occurring accident type is the frontal collision and has been the main focus of safety efforts with regard to restraint systems. Air bags are an effective injur/prevention device, however their deployment can introduce new injury mechanisms. Air bags save lives and decrease the severity of major injuries in exchange for increasing the number of minor injuries.
X