Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Performance Parameters for Advanced Ceramic Catalyst Supports

1999-10-25
1999-01-3631
The stringent emissions legislation has necessitated advances in the catalytic converter system comprising the substrate, washcoat technology, catalyst formulation and packaging design. These advances are focused on reducing light-off emissions at lower temperature or shorter time, increasing FTP efficiency, reducing back pressure and meeting the mechanical and thermal durability requirements over 100,000 vehicle miles. This paper reviews the role of cordierite ceramic substrate and how its design can help meet the stringent emissions legislation. In particular, it compares the effect of cell geometry and size on performance parameters like geometric surface area, open frontal area, hydraulic diameter, thermal mass, heat transfer factor, mechanical integrity factor and thermal integrity factor - all of which have a bearing on emissions, back pressure and durability. The properties of advanced cell configurations like hexagon are compared with those of standard square cell.
Technical Paper

Advanced Three-Way Converter System for High Temperature Exhaust Aftertreatment

1997-02-24
970265
An advanced three-way converter system with significant improvements in light-off performance, conversion efficiency, thermal stability and physical durability at high operating temperature is described. The converter system is comprised of a light-weight ceramic substrate with high surface area triangular cell structure, a new catalyst formulation with enhanced thermal stability and good substrate compatibility, and a durable packaging design which together lead to consistent improvements in high temperature performance and durability. Experimental data including FTP performance, canning trials, and high temperature vibration and thermal shock tests for both the advanced and standard three-way converter systems are presented.
Technical Paper

Durable Packaging Design for Cordierite Ceramic Catalysts for Motorcycle Application

1993-03-01
930161
The motorcycle emissions regulations for both two-stroke and four-stroke engines, which are receiving worldwide attention, will go into effect in the very near future. To meet these regulations, the motorcycles will require a catalyst in conjunction with the muffler due to space limitations. The combination of high engine speeds, high vibrational acceleration, high HC and CO emissions, high oxidation exotherms, and stringent durability requirements, points to cordierite ceramic substrate as an ideal catalyst support. However, as an integral unit within the muffler, its packaging design must be capable of withstanding isothermal operating conditions which may exceed the upper intumescent temperature limit of the ceramic mat. This paper describes a durable packaging design for the ceramic catalyst which employs a hybrid ceramic mat, special end rings and gaskets, and high strength stainless steel can.
Technical Paper

Measurement of Biaxial Compressive Strength of Cordierite Ceramic Honeycombs

1993-03-01
930165
The stringent durability requirements approaching 100,000 vehicle miles for automotive substrates and 290,000 vehicle miles for large frontal area diesel substrates for 1994+ model year vehicles call for advanced packaging designs with thick ceramic mats and high mount densities. The latter result in high mounting pressure on the substrate and enhance its mechanical integrity against engine vibrations, road shocks and back pressure forces. A novel measurement technique which applies a uniform biaxial compressive load on the lateral surface of ceramic substrates, thereby simulating canning loads, is described. The biaxial compressive strength data obtained in this manner help determine the maximum mounting pressure and mat density for a durable packaging design. The biaxial compressive strength data for both round and non round substrates with small and large frontal area are presented.
Technical Paper

Size Effect on the Strength of Ceramic Catalyst Supports

1992-10-01
922333
The typical ceramic catalyst support for automotive application has a total volume of 1640 cm3. Approximately 10% of this volume is subjected to tensile thermal stresses due to a radial temperature gradient in service [1]*. These stresses are kept below 50% of the substrate strength to minimize fatigue degradation and to ensure long-term durability [2]. However, the tensile strength measurements are carried out in 4-point bending using 2.5 cm wide x 1.2 cm thick x 10 cm long modulus of rupture bars in which the specimen volume subjected to tensile stress is merely 3.2 cm3 or 0.2% of the total substrate volume [3]. Thus, a large specimen population is often necessary (50 specimens or more) to obtain the strength distribution representative of full substrate. This is particularly true for large frontal area substrates for diesel catalyst supports with an order of magnitude larger stressed volume. In this paper, the modulus of rupture data are obtained as function of specimen size.
Technical Paper

New Developments in Packaging of Ceramic Honeycomb Catalysts

1992-10-01
922252
The emissions regulations for the decade of 1990s are not only more stringent but are also required of vehicles other than passenger cars, for example both diesel and gasoline trucks as well as motorcycles. These latter applications involve different operating conditions in terms of space velocities, temperature profiles, and vibrational loads than those typical of passenger cars [1]*. In addition, the performance and durability requirements for these applications call for lower back pressure and longer service life. Furthermore, the space availability and the operating temperature range differ vastly so as to require special packaging designs to meet the durability requirements. This paper provides new data for ceramic insulating mats, both intumescent and non-intumescent [2,3], and ceramic substrates with thin and thick walls and square and triangular cell geometries [4], which are under development for non-passenger car applications indicated above.
Technical Paper

Design Considerations for Diesel Flow-Through Converters

1992-02-01
920145
The large frontal area cordierite ceramic flow-through converter for diesel emissions must meet the 290K vehicle mile durability requirement, almost a six fold increase over that of automotive converters. This paper compares the size, the geometry and the operating conditions of automotive vs. diesel converters and suggests ways to design the converter system to meet the challenging durability requirements without compromising its performance with respect to back pressure and conversion efficiency. It is shown that the mechanical durability of the system, which is critical for meeting the 290K vehicle mile durability, can best be met by ensuring good compatibility between the substrate and washcoat and by designing a rugged packaging system with positive mounting pressure under all driving conditions.
Technical Paper

Thermal Shock Resistance of Oval Monolithic Heavy Duty Truck Converters

1988-02-01
880101
The long term durability of a heavy duty gasoline truck converter is addressed by examining thermal stresses due to radial temperature gradients under three different driving schedules. The pertinent physical properties of a catalyzed cordierite ceramic converter, with triangular cell structure, are first measured as function of temperature. These are followed by thermal mapping of mid-bed temperatures with the aid of thermocouples under various driving cycles on the truck dynamometer. Both the physical properties and the temperature distribution are then used as input parameters in the finite element thermal stress model to compute stresses in the oval converter.
Technical Paper

High Temperature Fatigue in Ceramic Honeycomb Catalyst Supports

1985-10-01
852100
The high temperature dynamic fatigue data for the catalyst support composition, EX-20, 400/6.8, are presented. These data indicate that the fatigue effects are more severe when the substrate temperature in the peripheral region is near 200°C. The major impact of high temperature fatigue is the slow degradation of substrate’s initial strength while in service. Such a degradation must be taken into account in designing the total converter package to meet life requirements. For the EX-20, 400/6.8 substrate, approximately 50% of its initial strength is available to withstand the combined stresses from mechanical, thermal, and vibrational loads in service. At temperatures well above 200°C, the available design strength can be as high as 65% of substrate’s initial strength. The fatigue theory, the measurement technique, and the application of fatigue data to long term durability of cordierite substrates are discussed.
Technical Paper

Mechanical Integrity of Ceramic Monolithic Converters

1981-11-01
811324
The converter assembly consists of a ceramic monolith with racetrack cross-section, a suitable “springy” mat wrapped around it and a clam-shell steel can to contain and guard these components against road hazards. The process to effect this assembly is rather dynamic and introduces directional loads onto the monolith in view of the anisotropic stiffness of the can. If these loads exceed certain values, they may cause failure of the monolith either by crushing it or by shearing it. In this paper we analyze the stiffness of various components of converter assembly, determine the load distribution around the monolith, and modify the design of can and monolith to make the load distribution more favorable. It is concluded that the converter assembly can be optimized and the failure of monoliths, if any, eliminated during closure. The present monoliths do not suffer from such failure.
X