Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Effects of Surface Treatment (Lubricant) on Spot Friction Welded Joints Made of 6111-T4 Aluminum Sheets

2007-04-16
2007-01-1706
The effects of lubricant on lap shear strength of Spot Friction Welded (SFW) joints made of 6111-T4 alloys were studied. Taguchi L8 design of experiment methodology was used to determine the lubricant effects. The results showed that the lap shear strength increased by 9.9% when the lubricant was present at the top surface compared to that of the baseline (no lubricant) whereas the lap shear strength reduced by 10.2% and 10.9% when the lubricant was present in the middle and at the bottom surfaces compared to that of the baseline (no lubricant), respectively. The microstructure analysis showed a zigzag interface at the joint between the upper and the lower sheet metal for the baseline specimen, the specimens with the lubricant at the top and at the bottom. However, a straight line interface is exhibited at the joint between the upper and the lower sheet for the specimen with the lubricant in the middle. The weld nugget sizes of the lap shear tested specimens were measured.
Technical Paper

Failure Loads of Spot Friction Welds in Aluminum 6111-T4 Sheets under Quasi-Static and Dynamic Loading Conditions

2007-04-16
2007-01-0983
In this investigation, spot friction welds in aluminum 6111-T4 lap-shear specimens were tested under both quasi-static and dynamic loading conditions. Micrographs of the spot friction welds after testing were examined to understand the failure modes of spot friction welds in lap-shear specimens under different loading conditions. The micrographs indicate that the spot friction welds produced by this particular set of welding parameters failed in interfacial failure mode under both quasi-static and dynamic loading conditions. The load and displacement histories for lap-shear specimens were obtained under quasi-static and dynamic loading conditions at three different impact velocities. The failure loads of spot friction welds in lap-shear specimens under dynamic loading conditions are about 7% larger than those under quasi-static loading conditions.
Technical Paper

Fatigue Failures of Spot Friction Welds in Aluminum 6111-T4 Sheets Under Cyclic Loading Conditions

2006-04-03
2006-01-1207
Fatigue failures of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets under cyclic loading conditions are investigated in this paper. The paths of fatigue cracks near the spot friction welds are first discussed. A fatigue crack growth model based on the Paris law for crack propagation and the global and local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of these spot friction welds. The global stress intensity factors and the local stress intensity factors based on the recent published works for resistance spot welds in lap-shear specimens are used to estimate the local stress intensity factors for kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.
Technical Paper

Fracture and Fatigue Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets

2005-04-11
2005-01-1247
In this paper, fracture and fatigue mechanisms of spot friction welds in aluminum 6111-T4 lap-shear specimens are investigated based on experimental observations. Optical and scanning electron micrographs of these spot friction welds before and after failure under quasi-static and cyclic loading conditions are examined. The micrographs show the fracture and fatigue mechanisms of spot friction welds under quasi-static and cyclic loading conditions. The experimental observations indicate that the fracture mechanisms depend on the microstructure and geometry of welds under quasi-static loading conditions. Under cyclic loading conditions, the fatigue mechanisms depend not only on the microstructure and geometry of welds but also on the load amplitudes.
Technical Paper

Effects of Friction Stir Processing on Mechanical Properties of the Cast Aluminum Alloy A356

2005-04-11
2005-01-1249
Surfaces of A356 castings were treated by friction stir processing to reduce porosity and to create more uniform distributions of second-phase particles. Dendritic microstructures were eliminated in stir zones. The ultimate tensile strength, ductility, and fatigue life of the cast A356 was increased by friction stir processing. Tensile specimens of cast and friction stir processed metal were also given a T7 heat treatment. Higher tensile strengths and ductilities were also measured for these friction stir processed specimens.
Technical Paper

Friction Stir Spot Welding of Advanced High-Strength Steels - A Feasibility Study

2005-04-11
2005-01-1248
An exploratory study was conducted to investigate the feasibility of friction stir spot welding advanced high-strength steel sheet metals. The fixed pin approach was used to weld 600MPa dual phase steel and 1310MPa martensitic steel. A single tool, made of polycrystalline cubic boron nitride, survived over one hundred welding trials without noticeable degradation and wear. Solid-state metallurgical bonding was produced with welding time in the range of 2 to 3 seconds, although the bonding ligament width was relatively small. The microstructures and hardness variations in the weld regions are discussed. The results from tensile-shear and cross-tensile tests are also presented.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

2005-04-11
2005-01-1256
Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Technical Paper

Investigation of Fatigue Lives of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets Based on Fracture Mechanics

2005-04-11
2005-01-1250
The fatigue lives of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets are investigated here. The paths of fatigue cracks near spot friction welds are first discussed. A fatigue crack growth model based on the Paris law for crack propagation and the local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of spot friction welds. The global and local stress intensity factors based on a recent work of Wang and Pan for resistance spot welds in lap-shear specimens are used to estimate the local stress intensity factors of kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets

2004-03-08
2004-01-1330
Microstructures and failure mechanisms of spot friction welds in aluminum 6111-T4 lap-shear specimens are investigated based on experimental observations. Two types of tools, a Type I tool with a flat tool shoulder and a Type II tool with a concave tool shoulder, were used to join the aluminum sheets with different processing parameters. Optical micrographs of the cross sections of spot friction welds made by the two types of tools in lap-shear specimens before and after failure are examined. These spot friction welds show the failure mode of nugget pullout under lap-shear loading conditions. However, the micrographs show different microstructures and failure mechanisms for spot friction welds made by the two types of tools with different processing parameters.
Technical Paper

Failure Mechanisms of Sandwich Specimens With Epoxy Foam Cores Under Bending Conditions

2003-03-03
2003-01-0327
Sandwich specimens with DP590 steel face sheets and structural epoxy foam cores are investigated under three-point bending conditions. Experimental results indicate that the maximum loads correspond to extensive cracking in the foam cores. Finite element simulations of the bending tests are also performed to understand the failure mechanisms of the epoxy foams. In these simulations, the plastic behavior of the steel face sheets is modeled by the Mises yield criterion with consideration of plastic strain hardening. A pressure sensitive yield criterion is used to model the plastic behavior of the epoxy foam cores. The epoxy foams are idealized to follow an elastic perfectly plastic behavior. The simulation results indicate that the load-displacement responses of some sandwich specimens agree with the experimental results.
X