Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Fuel & Lubricant Effects on Stochastic Preignition

2019-01-15
2019-01-0038
In this multi-phase study, fuel and lubricant effects on stochastic preignition (SPI) were examined. First, the behavior of fuels for which SPI data had previously been collected were characterized in terms of their combustion and emissions behavior, and correlations between these characteristics and their SPI behavior were examined. Second, new SPI data was collected for a matrix of fuels that was constructed to test and confirm hypotheses that resulted from interpretation of the earlier data in the study and from data in open literature. Specifically, the extent to which the presence of heavy components in the fuel affected SPI propensity, and the extent to which flame initiation propensity affected SPI propensity, were examined. Finally, the interaction of fuels with lubricants expected to exhibit a range of SPI propensities was examined.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Journal Article

Strategies for Meeting Phase 2 GHG and Ultra-Low NOx Emission Standards for Heavy-Duty Diesel Engines

2018-04-03
2018-01-1429
When considered along with Phase 2 Greenhouse Gas (GHG) requirements, the proposed Air Resource Board (ARB) nitrogen oxide (NOx) emission limit of 0.02 g/bhp-hr will be very challenging to achieve as the trade-off between fuel consumption and NOx emissions is not favorable. To meet any future ultra-low NOx emission regulation, the NOx conversion efficiency during the cold start of the emission test cycles needs to be improved. In such a scenario, apart from changes in aftertreatment layout and formulation, additional heating measures will be required. In this article, a physics-based model for an advanced aftertreatment system comprising of a diesel oxidation catalyst (DOC), an SCR-catalyzed diesel particulate filter (SDPF), a stand-alone selective catalytic reduction (SCR), and an ammonia slip catalyst (ASC) was calibrated against experimental data.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Technical Paper

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

2017-03-28
2017-01-0698
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand.
Journal Article

OBD Diagnostic Strategies for LEVIII Exhaust Gas Aftertreatment Concepts

2015-04-14
2015-01-1040
Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
Technical Paper

Experimental and Computational Analysis of Diesel-Natural Gas RCCI Combustion in Heavy-Duty Engines

2015-04-14
2015-01-0849
Substitution of diesel fuel with natural gas in heavy-duty diesel engines offers significant advantages in terms of operating cost, as well as NOx, PM emissions and greenhouse gas emissions. However, the challenges of high THC and CO emissions, combustion stability, exhaust temperatures and pressure rise rates limit the substitution levels across the engine operating map and necessitate an optimized combustion strategy. Reactivity controlled compression ignition (RCCI) combustion has shown promise in regard to improving combustion efficiency at low and medium loads and simultaneously reducing NOx emissions at higher loads. RCCI combustion exploits the difference in reactivity between two fuels by introducing a less reactive fuel, such as natural gas, along with air during the intake stroke and igniting the air-CNG mixture by injecting a higher reactivity fuel, such as diesel, later in the compression stroke.
Technical Paper

Impact of Sulfur-Oxides on the Ammonia Slip Catalyst Performance

2014-04-01
2014-01-1545
The ammonia slip catalyst (ASC), typically composed of Pt oxidation catalyst overlaid with SCR catalyst, is employed for the mitigation of NH3 slip originating from SCR catalysts. Oxidation and SCR functionalities in an ASC can degrade through two key mechanisms i) irreversible degradation due to thermal aging and ii) reversible degradation caused by sulfur-oxides. The impact of thermal aging is well understood and it mainly degrades the SCR function of the ASC and increases the NH3 conversion to undesired products [1]. This paper describes the impact of sulfur-oxides on critical functions of ASC and on NH3 oxidation activity and selectivity towards N2, NOx and N2O. Furthermore impact of desulfation under selected conditions and its extent of ASC performance recovery is explained.
Journal Article

Crude Tall Oil-Based Renewable Diesel as a Blending Component in Passenger Car Diesel Engines

2013-10-14
2013-01-2685
The residue and waste streams of existing industry offer feasible and sustainable raw materials for biofuel production. All kind of biomass contains carbon and hydrogen which can be turned into liquid form with suitable processes. Using hydrotreatment or Biomass-to-Liquid technologies (BTL) the liquid oil can be further converted into transportation biofuels. Hydrotreatment technology can be used to convert bio-oils and fats in to high quality diesel fuels that have superior fuel properties (e.g. low aromatic content and high cetane number) compared to regular diesel fuel and first generation ester-type diesel fuel. UPM has developed a new innovative technology based on hydrotreatment that can be used to convert Crude Tall Oil (CTO) into high quality renewable diesel fuel. This study concentrated on determining the functionality and possible effects of CTO based renewable diesel as a blending component on engine emissions and engine performance.
Technical Paper

Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System

2013-04-08
2013-01-0288
Downsizing in combination with turbocharging currently represents the main technology trend for meeting CO2 emissions with gasoline engines. Besides the well-known advantages of downsizing the compression ratio has to be reduced in order to mitigate knock at higher engine loads along with increased turbocharging demand to compensate for the reduction in power. Another disadvantage occurs at part load with increasing boost pressure levels causing the part load efficiencies to deteriorate. The application of a variable compression ratio (VCR) system can help to mitigate these disadvantages. The 2-stage VCR system with variable kinetic lengths entails variable powertrain components which can be used instead of the conventional components and thus only require minor modifications for existing engine architectures. The presented variable length connecting rod system has been continuously developed over the past years.
Technical Paper

Comparison of SCR Catalyst Performance on RMC SET Emission Cycle between an Engine and a High Flow Burner Rig

2013-04-08
2013-01-1070
Government agencies like EPA play an important role through regulation to reduce emissions and fuel consumption and to drive technological developments to reduce the environmental impact of burning petroleum fuels. Emissions testing and control is one of the leading and growing fields in the development of modern vehicles. Recently, Cummins Emissions Solutions (CES) and Southwest Research Institute (SwRI) worked jointly in order to achieve a method to conduct emissions testing efficiently and effectively. The collaborative work between the two organizations led to the usage of FOCAS HGTR™ (a diesel-based burner test rig at SwRI) to simulate the exhaust conditions generated by a 2010 ISX Cummins production engine operating over an EPA standard Ramped Modal Cycle Supplemental Emissions Test (RMC SET) cycle.
Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Technical Paper

Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications

2012-09-24
2012-01-1962
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
Journal Article

Investigation of the Impact of Real-World Aging on Diesel Oxidation Catalysts

2012-04-16
2012-01-1094
Real-world operation of diesel oxidation catalysts (DOCs), used in a variety of aftertreatment systems, subjects these catalysts to a large number of permanent and temporary deactivation mechanisms. These include thermal damage, induced by generating exotherm on the catalyst; exposure to various inorganic species contained in engine fluids; and the effects of soot and hydrocarbons, which can mask the catalyst in certain operating modes. While some of these deactivation mechanisms can be accurately simulated in the lab, others are specific to particular engine operation regimes. In this work, a set of DOCs, removed from prolonged service in the field, has been subjected to a detailed laboratory study. Samples obtained from various locations in these catalysts were used to characterize the extent and distribution of deactivation.
Technical Paper

Investigation Regarding the Influence of a Catalytic Combustion Chamber Coating on Gasoline Combustion Characteristics, Emission Formation and Engine Efficiency

2012-04-16
2012-01-1097
Over the past few years, both global warming and rising oil prices led to a significantly increased demand for low fuel consumption in passenger cars. However, the necessity to also meet the limits of today's and future emission regulations makes it more and more difficult to maintain a high engine efficiency without the use of an expensive external exhaust gas after-treatment system. Therefore, new technologies that simultaneously prevent emission formation and reduce fuel consumption inside the internal combustion engine during the combustion process itself are of highest interest. This paper analyzes the influence of a catalytic coating of the combustion chamber on combustion, emission formation and fuel consumption. For this purpose, test runs with a production 2.0-liter, 4-cylinder, 4-valve, double overhead camshaft (DOHC), port fuel injection (PFI) gasoline engine were performed.
Technical Paper

Modeling of Dual Layer Ammonia Slip Catalysts (ASC)

2012-04-16
2012-01-1294
In recent years, ammonia slip catalysts (ASC) are being used downstream of an SCR system to minimize the ammonia slip. The dual-layer ASC is more attractive for its bi-functionality in reducing the ammonia and NOX emissions. It consists of two layers with the upper layer comprising a component with SCR functionality and the lower layer a PGM containing catalyst with oxidation functionality. Thus, both oxidation and SCR reactions take place in two different layers and are interlinked by the inter-layer mass transfer mechanism. In addition, adsorption and desorption kinetics between the gas and solid phases play a significant role. Mathematically, the overall system is a complex system of mass, momentum and energy transfer equations with temporal and spatial variables in both axial and radial directions. In this work, we focus on devising a suitable, computationally inexpensive model for such ASCs to be efficiently used for design, control and system optimization studies.
Technical Paper

SOLID SCR®: Demonstrating an Improved Approach to NOx Reduction via a Solid Reductant

2011-09-13
2011-01-2207
Stringent global emissions legislation demands effective NOx reduction strategies, particularly for the aftertreatment, and current typical liquid urea SCR systems achieve efficiencies greater than 90% [1]. However, with such high-performing systems comes the trade-off of requiring a tank of reductant (urea water solution) to be filled regularly, usually as soon as the fuel fillings or as far as oil changes. Advantages of solid reductants, particularly ammonium carbamate, include greater ammonia densities, enabling the reductant refill interval to be extended several multiples versus a given reductant volume of urea, or diesel exhaust fluid (DEF) [2]. An additional advantage is direct gaseous ammonia dosing, enabling reductant injection at lower exhaust temperatures to widen its operational coverage achieving greater emissions reduction potential [3], as well as eliminating deposits, reducing mixing lengths, and avoiding freeze/thaw risks and investments.
Technical Paper

Development and Calibration of On-Board-Diagnostic Strategies Using a Micro-HiL Approach

2011-04-12
2011-01-0703
Beginning in 2010, implementation of on-board diagnostics (OBD) is mandatory for all the heavy-duty engine applications in the United States. The task of developing OBD strategies and calibrating them is a challenging one. The process involves a strong interdependency on base engine emissions, controls and regulations. On top of that the strategies developed as a result of the regulatory requirements need to go through a stringent and time-intensive process of software implementation and integration. The recent increasing demands to minimize the development process have been pushing the envelope on the methodologies used in developing the strategies and the calibration for robust monitoring. The goal of this paper is to provide a concise overview of a process utilized to help the development, testing and calibration of the OBD strategies on a 2010 model year heavy-duty diesel engine.
Journal Article

Pre-Turbo Aftertreatment Position for Large Bore Diesel Engines - Compact & Cost-Effective Aftertreatment with a Fuel Consumption Advantage

2011-04-12
2011-01-0299
Tier 4 emissions legislation is emerging as a clear pre-cursor for widespread adoption of exhaust aftertreatment in off-highway applications. Large bore engine manufacturers are faced with the significant challenge of packaging a multitude of catalyst technologies in essentially the same design envelope as their pre-Tier 4 manifestations, while contending with the fuel consumption consequences of the increased back pressure, as well as the incremental cost and weight associated with the aftertreatment equipment. This paper discusses the use of robust metallic catalysts upstream of the exhaust gas turbine, as an effective means to reduce catalyst volume and hence the weight and cost of the entire aftertreatment package. The primarily steady-state operation of many large bore engine applications reduces the complication of overcoming pre-turbine catalyst thermal inertia under transient operation.
Technical Paper

The Impact of Different Biofuel Components in Diesel Blends on Engine Efficiency and Emission Performance

2010-10-25
2010-01-2119
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, the Institute for Combustion Engines carried out an investigation program to explore the potential of future biofuel components in Diesel blends. In this paper, thermodynamic single cylinder engine results of today's and future biofuel components are presented with respect to their engine-out emissions and engine efficiency. The investigations were divided into two phases: In the first phase, investigations were performed with rapeseed oil methyl ester (B100) and an Ethanol-Gasoline blend (E85). In order to analyze the impact of different fuel blends, mixtures with 10 vol-% of B100 or E85 and 90 vol-% of standardized EN590 Diesel were investigated. Due to the low cetane number of E85, it cannot be used purely in a Diesel engine.
X