Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

2018-08-07
2018-01-1639
With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

Driving Behavior Prediction at Roundabouts Based on Integrated Simulation Platform

2018-04-03
2018-01-0033
Due to growing interest in automated driving, the need for better understanding of human driving behavior in uncertain environment, such as driving behavior at un-signalized crossroad and roundabout, has further increased. Driving behavior at roundabout is greatly influenced by different dynamic factors such as speed, distance and circulating flow of the potentially conflicting vehicles, and drivers should choose whether to leave or wait at the upcoming exit according to these factors. In this paper, the influential dynamic factors and driving behavior characteristics at the roundabout is analyzed in detail, random forest method is then deployed to predict the driving behavior. For training the driving behavior model, four typical roundabout layouts were created under a real-time driving simulator with PanoSim-RT and dSPACE. Traffic participants with different motion style were also set in the simulation platform to mimic real driving conditions.
Technical Paper

Research on the Classification and Identification for Personalized Driving Styles

2018-04-03
2018-01-1096
Most of the Advanced Driver Assistance System (ADAS) applications are aiming at improving both driving safety and comfort. Understanding human drivers' driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system performance, in particular, the acceptance and adaption of ADAS to human drivers. The research presented in this paper focuses on the classification and identification for personalized driving styles. To motivate and reflect the information of different driving styles at the most extent, two sets, which consist of six kinds of stimuli with stochastic disturbance for the leading vehicles are created on a real-time Driver-In-the-Loop Intelligent Simulation Platform (DILISP) with PanoSim-RT®, dSPACE® and DEWETRON® and field test with both RT3000 family and RT-Range respectively.
Technical Paper

Personalized Adaptive Cruise Control Considering Drivers’ Characteristics

2018-04-03
2018-01-0591
In order to improve drivers’ acceptance to advanced driver assistance systems (ADAS) with better adaptation, drivers’ driving behavior should play key role in the design of control strategy. Adaptive cruise control systems (ACC) have many factors that can be influenced by different driving behavior. It is important to recognize drivers’ driving behavior and take human-like parameters to the adaptive cruise control systems to assist different drivers effectively via their driving characteristics. The paper proposed a method to recognize drivers’ behavior and intention based on Gaussian Mixture Model. By means of a fuzzy PID control method, a personalized ACC control strategy was designed for different kinds of drivers to improve the adaptabilities of the systems. Several typical testing scenarios of longitudinal case were created with a host vehicle and a traffic vehicle.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Identification of Driver Individualities Using Random Forest Model

2017-09-23
2017-01-1981
Driver individualities is crucial for the development of the Advanced Driver Assistant System (ADAS). Due to the mechanism that specific driving operation action of individual driver under typical conditions is convergent and differentiated, a novel driver individualities recognition method is constructed in this paper using random forest model. A driver behavior data acquisition system was built using dSPACE real-time simulation platform. Based on that, the driving data of the tested drivers were collected in real time. Then, we extracted main driving data by principal component analysis method. The fuzzy clustering analysis was carried out on the main driving data, and the fuzzy matrix was constructed according to the intrinsic attribute of the driving data. The drivers’ driving data were divided into multiple clusters.
Technical Paper

Driver Behavior Characteristics Identification Strategy for Adaptive Cruise Control System with Lane Change Assistance

2017-03-28
2017-01-0432
Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
Journal Article

Network Scheduling for Distributed Controls of Electric Vehicles Considering Actuator Dynamic Characteristics

2017-03-28
2017-01-0019
Electric vehicle (EV) has been regarded as not only an effective solution for environmental issues but also a more controllable and responsible device to driving forces with electric motors and precise torque measurement. For electric vehicle equipped with four in-wheel motors, its tire longitudinal forces can be generated independently and individually with fully utilized tire adhesion at each corner. This type of the electric vehicles has a distributed drive system, and often regarded as an over-actuated system since the number of actuators in general exceeds the control variables. Control allocation (CA) is often considered as an effective means for the control of over-actuated systems. The in-vehicle network technology has been one of the major enablers for the distributed drive systems. The vehicle studied in this research has an electrohydraulic brake system (EHB) on front axle, while an electromechanical brake system (EMB) on rear axle.
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
Journal Article

Evaluation and Design of Electric/Electronic-Architectures of the Electric Vehicle

2016-06-17
2016-01-9143
The evaluation of electric vehicle electric/electronic-architectures (e/e-architectures) is the main topic of this paper. The electric vehicle is chosen as an example system, as it reflects the typical challenges of modern vehicle e/e-architecture development. The development of modern automotive technology also presents another important trend - vehicle electrification. New electric and electronic devices are developed and required in the automotive industry and control commands are exchanged by electric and electronic ones. The energy storage systems (ESS) properly reflect the above two aspects. The energy storage device also takes care of the peak loads, the high load dynamics, and it utilizes the braking energy in order to increase the efficiency. In this work a Li-ion battery and an ultracapacitor both are considered as energy storage devices.
Technical Paper

Development of Battery/Supercapacitor Hybrid Energy Management System for Electric Vehicles Based on a Power Sharing Strategy Using Terrain Information

2016-04-05
2016-01-1242
Since road electric vehicles typically require a significantly variable and random load power demand in response to traffic conditions, such as frequent sequences of acceleration and deceleration and uphill followed by downhill runs. In this context, the energy management system of electric vehicle must ensure an effective power distribution between battery and supercapacitor to satisfy load demand. In this paper, the power management control strategy of hybrid energy storage system is developed by introducing terrain information to optimize system efficiency and battery lifetime. In this presented research, we aim at developing a power management control strategy considering the influence of the terrain information on system efficiency and battery lifetime.
Technical Paper

Fuzzy Supervisory Based Variable Frequency Control Strategy for Active Battery/Supercapacitor Combination in Electric Vehicles

2016-04-05
2016-01-1203
This paper describes a novel power management control strategy of battery and supercapacitor hybrid energy storage system to improve system efficiency and battery lifetime. In the presented research, the high and low frequency power demand in the load is separated by a Haar wavelet transform algorithm to overcome the problem of battery overload work and associated degeneration in battery lifetime resulting from an ineffective distribution between battery and supercapacitor. The purpose of frequency distribution is that the supercapacitor is used to share high frequency power components of load power demand to smooth the power demand applied to battery. However, the sole frequency control often fails to realize the optimal utilization of supercapacitor because of the uncertain variation in the driving cycle.
Journal Article

Power-Balance and Wavelet-Transform Based Power Management of Battery-Supercapacitor Hybrid System for Electric Vehicles

2015-04-14
2015-01-0253
Power management of a hybrid energy storage system (HESS) with battery and supercapacitor(SC) is of critical importance for electric vehicles to achieve good driving performance, long traveling range and high energy efficiency. Due to the great differences in dynamic characteristics between battery and supercapacitor, and the complexity of a HESS, proper power management strategy between battery and supercapacitor remains to be challenging. The proposed research in this paper is to develop a power-balance and wavelet-transform based strategy for power distribution in a way such that each device can be utilized optimally. The transient dynamics is first decoupled via wavelet-transform algorithm while the power-balance algorithm is employed to improve system robustness based on the desired velocity-SOC relationship and a fuzzy logical controller. Finally some simulations have been conducted with results shown that the proposed strategy is valid and effective.
Technical Paper

Accurate Speed Control of the DC Motor for Anti-Lock Braking System

2015-04-14
2015-01-0654
The permanent-magnet DC motor, which is directly connected to the hydraulic pump, is a significant component of hydraulic control unit (HCU) in an anti-lock braking system (ABS). It drives the pump to dump the brake fluid from the low-pressure accumulator back to master cylinder and makes sure the pressure decreases of wheel cylinder in ABS control. Obviously, the motor should run fast enough to provide sufficient power and prevent the low-pressure accumulator from fully charging. However, the pump don't need always run at full speed for the consideration of energy conservation and noise reduction. Therefore, it is necessary to accurately regulate the speed of the DC motor in order to improve quality of ABS control. In this paper, an accurate speed control algorithm was developed for the permanent-magnet DC motor of the ABS to implement the performance of the system, reduce the noise and save the energy in the meanwhile.
X