Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of a High Fidelity CAE Model for Predicting Brake System Temperatures

2017-03-28
2017-01-0145
In order to specify a brake system that will have robust performance over the entire range of expected vehicle drive cycles it is vital that it has sufficient thermal inertia and dissipation to ensure that component temperatures are kept within acceptable limits. This paper presents a high fidelity CAE (computer aided engineering) technique for predicting the temperature of the front brake and the surrounding suspension components whilst installed on vehicle. To define the boundary conditions the process utilizes a coupled unsteady CFD (computational fluid dynamics) and thermal solver to accurately predict the convective heat transfer coefficients across a range of vehicle speeds. A 1-D model is used to predict the brake energy inputs as well as the vehicle speed-time curves during the drive cycle based on key vehicle parameters including wide-open-throttle performance, drive train losses, rolling resistance, aerodynamic drag etc.
Technical Paper

Full Vehicle Aero-Thermal Cooling Drag Sensitivity Analysis for Various Radiator Pressure Drops

2016-04-05
2016-01-1578
Simulations are presented which fully couple both the aerodynamics and cooling flow for a model of a fully engineered production saloon car (Jaguar XJ) with a two-tier cooling pack. This allows for the investigation of the overall aerodynamic impact of the under-hood cooling flow, which is difficult to predict experimentally. The simulations use a 100 million-element mesh, surface wrapped and solved to convergence using a commercially available RANS solver (STARCCM+). The methodology employs representative boundary conditions, such as rotating wheels and a moving ground plane. A review is provided of the effect of cooling flows on the vehicle aerodynamics, compared to published data, which suggest cooling flow accounts for 26 drag counts (0.026 Cd). Further, a sensitivity analysis of the pressure drop curves used in the porous media model of the heat exchangers is made, allowing for an initial understanding of the effect on the overall aerodynamics.
Technical Paper

A Simulation Approach for Vehicle Life-Time Thermal Analysis Applied to a HEV Battery System

2016-04-05
2016-01-0201
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
Technical Paper

Automotive Cabin Infotainment System Thermal Management

2015-04-14
2015-01-0328
The level of infotainment in today's vehicles and the customer expectation of the functionality imply a significant effort is required on thermal management of the systems, to guarantee their full operation under all operating conditions. The worst case thermal conditions the system will get exposed to are caused by solar loading on the cabin or heat up as a result of cabin heating. Simulation of a solar load driven case will be discussed in this paper. The long soak conditions during these tests result in the modelling requirement for long natural convection periods. This is creating a challenge for the conventional CFD simulations in turnaround time. New simulation methodology has resulted in significant speed up enabling these fully transient simulations in a reasonable turnaround time to enable programme support. A two phase approach to simulating this problem is proposed in this paper.
Technical Paper

Drive Cycle Simulation of A Tiered Cooling Pack Using Non-Uniform Boundary Conditions

2014-04-01
2014-01-0654
In a tiered cooling pack, the airflow through the individual heat exchangers is determined by the package and aperture lay out. Each heat exchanger rejects heat as a function of the internal coolant flows, the cooling airflow and the air temperature. In a typical automotive cooling pack, the cooling airflow will be non-uniform in velocity and temperature due to fans, aperture geometry, exterior flows, heat exchangers and recirculation. In a drive cycle, these boundary conditions will change with vehicle operating conditions like vehicle speed, engine speed, ambient temperature, and altitude. These non-uniform conditions on the cooling pack can lead to significant errors when uniform boundary conditions are assumed in a transient simulation. This error is commonly corrected using vehicle test data. A predictive approach, which eliminates the need for correlation vehicle testing, is presented.
Journal Article

Options for Coupled Thermal-Electric Modeling of Battery Cells and Packs

2014-04-01
2014-01-1834
Integration of advanced battery systems into the next generation of hybrid and electric vehicles will require significant design, analysis, and test efforts. One major design issue is the thermal management of the battery pack. Analysis tools are being developed that can assist in the development of battery pack thermal design and system integration. However, the breadth of thermal design issues that must be addressed requires that there are a variety of analysis tools to address them efficiently and effectively. A set of battery modeling tools has been implemented in the thermal modeling software code PowerTHERM. These tools are coupled thermal-electric models of battery behavior during current charge and discharge. In this paper we describe the three models in terms of the physics they capture, and their input data requirements. We discuss where the capabilities and limitations of each model best align with the different issues needed to be addressed by analysis.
Technical Paper

Engine Air Intake Thermal Modelling in Full Vehicle Underhood Environment

2013-04-08
2013-01-0861
The current trend of highly boosted petrol engines is demanding significant engineering effort on the air intake system development. The package of the air intake system is done early in the programme phase and the main engineering effort have historically been around achieving the system pressure drop targets. The thermal impact of the package is assessed during the vehicle testing phase. This can lead to significant design changes in order to maintain engine performance under all operating conditions late on in the development, driving up cost and programme delays. The highly boosted engine performance is very sensitive to heat pick up of the intake air and therefore requires an optimised system. To be able to support the engine intake design at the early program phases with thermal input, an analytical method has been developed.
Technical Paper

Cooling Airflow Simulation for Passenger Cars using Detailed Underhood Geometry

2006-10-31
2006-01-3478
Air flow in the underhood area is the primary source of engine cooling. A quick look at the vehicle underhood reveals exceptionally complex geometry. In addition to the engine, there are fans, radiator, condenser, other heat exchangers and components. The air flow needs to have adequate access to all relevant parts that require cooling. Due to complex geometry, the task to ensure sufficient air cooling is not a simple one. The air flow entering from the front grille is affected by many components on its path through the underhood. Even small geometry details affect the flow direction and can easily cause recirculation regions which reduce the cooling efficiency. Therefore, air cooling flow analysis requires detailed treatment of the underhood geometry and at the same time accurate air flow modeling. Recent advances in the lattice-Boltzmann equation (LBE) modeling are allowing both.
X