Refine Your Search

Topic

Search Results

Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics in a gasoline compression ignition (GCI) engine using three fuel injection strategies, including single-injection, double-injection, port fuel injection and direct injection (PFI+DI). A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict GCI combustion under various operating conditions. To provide insight into key reaction pathways, a post-process tool was used. The validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how the ignition occurs during the low-to high-temperature reaction transition and how it varies due to single- and double-injection and PFI+DI injection strategies.
Technical Paper

OH, soot and temperature distributions of wall-impinging diesel fuel spray under different wall temperatures

2019-12-19
2019-01-2184
OH, soot and temperature distributions of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set as 773 K, and the wall temperature (Tw) was set as 523 K, 673 K, 773 K, respectively. Three different injection pressures (Pi) of 60 MPa, 100 MPa, 160 MPa, and the ambient pressures (Pa) of 4 MPa were applied. The OH spatial distributions of wall-impinging spray were measured by the method of OH chemiluminescence imaging. Two-color pyrometry was applied to evaluate the spatial distributions of KL factor and flame temperature of wall-impinging spray. The results reveal that, OH chemiluminescence is observed in the region near the impingement point firstly. The regions of high OH chemiluminescence intensity and high KL factor appear in the location near the wall surface along the whole combustion process.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 1: Model Development

2019-04-02
2019-01-0467
Given increasingly stringent emission targets, engine efficiency has become of foremost importance. While increasing engine compression ratio can lead to efficiency gains, it also leads to higher in-cylinder pressure and temperatures, thus increasing the risk of knock. One potential solution is the use of a Variable Compression Ratio system, which is capable of exploiting the advantages coming from high compression ratio while limiting its drawbacks by operating at low engine loads with a high compression ratio, and at high loads with a low compression ratio, where knock could pose a significant threat. This paper describes the design of a model for the evaluation of fuel consumption for an engine equipped with a VCR system over representative drive cycles. The model takes as inputs; a switching time for the VCR system, the vehicle characteristics, engine performance maps corresponding to two different compression ratios, and a drive cycle.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 2: Modelling Results

2019-04-02
2019-01-0472
Variable Compression Ratio systems are an increasingly attractive solution for car manufacturers in order to reduce vehicle fuel consumption. By having the capability to operate with a range of compression ratios, engine efficiency can be significantly increased by operating with a high compression ratio at low loads, where the engine is normally not knock-limited, and with a low compression ratio at high load, where the engine is more prone to knock. In this way, engine efficiency can be maximized without sacrificing performance. This study aims to analyze how the effectiveness of a VCR system is affected by various powertrain and vehicle parameters. By using a Matlab model of a VCR system developed in Part 1 of this work, the influence of the vehicle characteristics, the drive cycle, and of the number of stages used in the VCR system was studied.
Technical Paper

Prediction of Autoignition and Flame Properties for Multicomponent Fuels Using Machine Learning Techniques

2019-04-02
2019-01-1049
Machine learning methods, such as decision trees and deep neural networks, are becoming increasingly important and useful for data analysis in various scientific fields including dynamics and control, signal processing, pattern recognition, fluid mechanics, and chemical synthesis, etc. For future engine design and performance optimization, there is an urgent need for a robust predictive model which could capture the major combustion properties such as autoignition and flame propagation of multicomponent fuels under a wide range of engine operating conditions, without massive experimental measurement or computational efforts. It will be shown that these long-held limitations and challenges related to complex fuel combustion and engine research could be readily solved by implementing machine learning methods.
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Technical Paper

Natural Flame Luminosity and Emission Spectra of Diesel Spray Flame under Oxygen-Enriched Condition in an Optical Constant Volume Vessel

2018-09-10
2018-01-1781
The application of oxygen-enriched or oxy-fuel combustion coupled with carbon capture and storage technology has zero carbon dioxide emission potential in the boiler and gas turbine of the power plant. However, the oxygen-enriched combustion with high oxygen level has few studies in internal combustion engines. The fundamental issues and challenges of high oxygen level are the great differences in the physical properties and chemical effects compared with the combustion in air condition. As a consequence, the diesel spray combustion characteristics at high oxygen level were investigated in an optical constant volume vessel. The oxygen volume fraction of tested gas was from 21% to 70%, buffered with argon. The high-speed color camera was used to record the natural flame luminosity.
Technical Paper

Effects of Low Temperature Reforming (LTR) Products of Low Octane Number Fuels on HCCI Combustion

2018-09-10
2018-01-1682
In order to achieve high-efficiency and clean combustion in HCCI engines, combustion must be controlled reasonably. A great variety of species with various reactivities can be produced through low temperature oxidation of fuels, which offers possible solutions to the problem of controlling in-cylinder mixture reactivity to accommodate changes in the operating conditions. In this work, in-cylinder combustion characteristics with low temperature reforming (LTR) were investigated in an optical engine fueled with low octane number fuel. LTR was achieved through low temperature oxidation of fuels in a reformer (flow reactor), and then LTR products (oxidation products) were fed into the engine to alter the charge reactivity. Primary Reference Fuels (blended fuel of n-heptane and iso-octane, PRFs) are often used to investigate the effects of octane number on combustion characteristics in engines.
Technical Paper

Design and Validation of a GT Power Model of the CFR Engine towards the Development of a Boosted Octane Number

2018-04-03
2018-01-0214
Developments in modern spark ignition (SI) engines such as intake boosting, direct-injection, and engine downsizing techniques have demonstrated improved performance and thermal efficiency, however, these strategies induce significant deviation in end-gas pressure/temperature histories from those of the traditional Research and Motor Octane Number (RON and MON) standards. Attempting to extrapolate the anti-knock performance of fuels tested under the traditional RON/MON conditions to boosted operation has yielded mixed results in both SI and advanced compression ignition (ACI) engines. This consideration motivates the present work with seeks to establish a pathway towards the development of the test conditions of a boosted octane number, which would better correlate to fuel performance at high intake pressure conditions.
Technical Paper

Experimental Investigation on the Effects of Injection Strategy on Combustion and Emission in a Heavy-Duty Diesel Engine Fueled with Gasoline

2017-10-08
2017-01-2266
Gasoline partially premixed combustion shows the potential to achieve clean and high-efficiency combustion. Injection strategies show great influence on in-cylinder air flow and in-cylinder fuel distribution before auto-ignition, which can significantly affect the combustion characteristics and emissions. This study explored the effects of various injection strategies, including port fuel injection (PFI), single direct injection (DIm), double direct injection (DIp+DIm) and port fuel injection coupled with a direct injection (PFI+DIm) on the combustion characteristics and emissions in a modified single cylinder heavy-duty diesel engine fueled with 92# gasoline at low load. The investigation consists of two parts. Firstly, the comparison among PFI, PFI+DIm, and DIp+DIm strategies was conducted at a fixed CA50 to explore the effects of PFI+DIm and DIp+DIm strategies on the thermal efficiency and combustion stability.
Technical Paper

Combustion Characteristics of Wall-Impinging Diesel Fuel Spray under Different Wall Temperatures

2017-10-08
2017-01-2251
The flame structure and combustion characteristics of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set to 773 K. The wall temperatures (Tw) were set to 523 K, 673 K and 773 K respectively. Three different injection pressures (Pi) of 600 bar, 1000bar and 1600bar, two ambient pressures (Pa) of 2 MPa and 4 MPa were applied. The flame development process of wall-impinging spray was measured by high-speed photography, which was utilized to quantify the flame luminosity intensity, ignition delay and flame geometrical parameters. The results reveal that, as the wall temperature increases, the flame luminosity intensity increases and the ignition delay decreases.
Technical Paper

A Theoretical Investigation of the Combustion of PRF90 under the Flexible Cylinder Engine Mode

2017-03-28
2017-01-1027
On-board fuel reforming offers a prospective clean combustion mode for the engines. The flexible cylinder engine strategy (FCE) is a new kind of such mode. In this paper, the combustion of the primary reference fuel of PRF90 was theoretically investigated in a homogeneous charge compression ignition engine to validate the FCE mode, mainly focusing on the ignition delay time, the flame speed, and the emissions. The simulations were performed by using the CHEMKIN2.0 package to demonstrate the fuel reforming process in the flexible cylinder, the cooling effect on the reformed products, and the combustions of the mixture of the fresh fuel and the reformed products in the normal cylinders. It was found that the FCE mode decreased the ignition delay time of the fuel by about 35 crank angles at a typical engine condition.
Journal Article

The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion

2017-03-28
2017-01-0773
Engine experiments were conducted on a heavy-duty single-cylinder engine to explore the effects of charge preparation, fuel stratification, and premixed fuel chemistry on the performance and emissions of Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted at a fixed total fuel energy and engine speed, and charge preparation was varied by adjusting the global equivalence ratio between 0.28 and 0.35 at intake temperatures of 40°C and 60°C. With a premixed injection of isooctane (PRF100), and a single direct-injection of n-heptane (PRF0), fuel stratification was varied with start of injection (SOI) timing. Combustion phasing advanced as SOI was retarded between -140° and -35°, then retarded as injection timing was further retarded, indicating a potential shift in combustion regime. Peak gross efficiency was achieved between -60° and -45° SOI, and NOx emissions increased as SOI was retarded beyond -40°, peaking around -25° SOI.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Journal Article

Simultaneous Measurement of Natural Flame Luminosity and Emission Spectra in a RCCI Engine under Different Fuel Stratification Degrees

2017-03-28
2017-01-0714
Reactivity controlled compression ignition (RCCI) is a potential combustion strategy to achieve high engine efficiency with ultra-low NOx and soot emissions. Fuel stratification can be used to control the heat release rate of RCCI combustion. But the in-cylinder combustion process of the RCCI under different fuel stratification degrees has not been well understood, especially at a higher engine load. In this paper, simultaneous measurement of natural flame luminosity and emission spectra was carried out on a light-duty optical RCCI engine under different fuel stratification degrees. The engine was run at 1200 revolutions per minute under a load about 7 bar indicated mean effective pressure (IMEP). In order to form fuel stratification degrees from low to high, the common-rail injection timing of n-heptane was changed from -180° CA after top dead center (ATDC) to -10° CA ATDC, while the iso-octane delivered in the intake stroke was fixed.
Technical Paper

Experimental and Modelling Investigations of the Gasoline Compression Ignition Combustion in Diesel Engine

2017-03-28
2017-01-0741
In this work the gasoline compression ignition (GCI) combustion characterized by both premixed gasoline port injection and gasoline direct injection in a single-cylinder diesel engine was investigated experimentally and computationally. In the experiment, the premixed ratio (PR), injection timing and exhaust gas recirculation (EGR) rate were varied with the pressure rise rate below 10 bar/crank angle. The experimental results showed that higher PR and earlier injection timing resulted in advanced combustion phasing and improved thermal efficiency, while the pressure rise rates and NOx emissions increased. Besides, a lowest ISFC of 176 g/kWh (corresponding to IMEP =7.24 bar) was obtained, and the soot emissions could be controlled below 0.6 FSN. Despite that NOx emission was effectively reduced with the increase of EGR, HC and CO emissions were high. However, it showed that GCI combustion of this work was sensitive to EGR, which may restrict its future practical application.
Technical Paper

Effects of Dual Loop EGR and Variable Geometry Turbocharger on Performance and Emissions of a Diesel Engine

2016-10-17
2016-01-2340
An experimental study is carried out to investigate the coupling between dual loop EGR (DL-EGR) and variable geometry turbocharger (VGT) on a heavy-duty commercial diesel engine under different operating conditions and inlet conditions. The effects of VGT rack position and high-pressure (HP) proportion in DL-EGR on engine performance and emissions are studied. The boosting system is a series 2-stage turbocharger with a VGT as the HP-stage. The HP-Proportion in DL-EGR is swept from 0% to 100% while several intake pressure values and EGR rates are fixed by adjusting the VGT position. Results demonstrate that the VGT and HP EGR both have great influence on the exhaust enthalpy and turbocharger efficiency. The exhaust enthalpy and the intake demand have great influence on the DL-EGR split strategy.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes

2016-10-17
2016-01-2185
In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
Journal Article

Study on the Double Injection Strategy of Gasoline Partially Premixed Combustion under a Light-Duty Optical Engine

2016-10-17
2016-01-2299
Gasoline partially premixed combustion (PPC) is a potential combustion concept to achieve high engine efficiency as well as low NOx and soot emissions. But the in-cylinder process of PPC is not well understood. In the present study, the double injection strategy of PPC was investigated on a light-duty optical engine. The fuel/air mixing and combustion process of PPC was evaluated by fuel-tracer planar laser-induced fluorescence (PLIF) and high-speed natural luminosity imaging technique, respectively. Combustion emission spectra of typical double injection case were analyzed. The primary reference fuel, PRF70 (70% iso-octane and 30% n-heptane by volume) was chosen as the lower reactivity fuel like gasoline. Double injection strategies of different first fuel injection timing and mass ratio of the two fuel injections were comparatively studied.
X