Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Measurement of Liquid Fuel Film Attached to the Wall in a Port Fueled SI Gasoline Engine

2023-10-24
2023-01-1818
Liquid fuel attached to the wall surface of the intake port, the piston and the combustion chamber is one of the main causes of the unburned hydrocarbon emissions from a port fueled SI engine, especially during transient operations. To investigate the liquid fuel film formation process and fuel film behavior during transient operation is essential to reduce exhaust emissions in real driving operations, including cold start operations. Optical techniques have been often applied to measure the fuel film in conventional reports, however, it is difficult to apply those previous techniques to actual engines during transient operations. In this study, using MEMS technique, a novel capacitance sensor has been developed to detect liquid fuel film formation and evaporation processes in actual engines. A resistance temperature detector (RTD) was also constructed on the MEMS sensor with the capacitance sensor to measure the sensor surface temperature.
Technical Paper

A Study of the Mechanism of High-Speed Knocking in a Two-Stroke SI Engine with High Compression Ratio

2023-10-24
2023-01-1824
Experimental methods and numerical analysis were used to investigate the mechanism of high-speed knocking that occurs in small two-stroke engines. The multi-ion probe method was used in the experiments to visualize flame propagation in the cylinder. The flame was detected by 14 ion probes grounded in the end gas region. A histogram was made of the order in which flames were detected. The characteristics of combustion in the cylinder were clarified by comparing warming up and after warming up and by extracting the features of the cycle in which knocking occurred. As a result, regions of fast flame propagation and regions prone to auto-ignition were identified. In the numerical analysis, flow and residual gas distribution in the cylinder, flame propagation and self-ignition were visualized by 3D CFD using 1D CFD calculation results as boundary conditions and initial conditions.
Technical Paper

Modeling of Diluted Combustion Characteristics of Gasoline Alternative Fuels Using Single Cylinder Engine

2023-10-24
2023-01-1839
For the survival of internal combustion engines, the required research right now is for alternative fuels, including drop-ins. Certain types of alternative fuels have been estimated to confirm the superiority in thermal efficiency. In this study, using a single-cylinder engine, olefin and oxygenated fuels were evaluated as a drop-in fuel considering the fuel characteristic parameters. Furthermore, the effect of various additive fuels on combustion speed was expressed using universal characteristics parameters.
Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
Technical Paper

Numerical Investigation of Multi-Stage HCCI Combustion with Small Chamber Inside Piston

2023-09-29
2023-32-0020
Homogeneous charge compression ignition (HCCI) combustion is promising for not only high thermal efficiency but also reducing nitrogen oxides (NOx) and PM simultaneously. However, the operational range of the HCCI combustion is limited because of some issues, such as poor control of ignition timing and knocking by the excessive rate of pressure rise. In this study, a new combustion system based on the HCCI combustion process is proposed based on the authors' previous experimental work. This combustion system has a divided combustion chamber of two parts, one is small and the other is large. The most significant feature is the small chamber inside the piston. At first, combustion takes place in the small chamber, and then the burned gas is ejected into the large chamber to ignite the mixture in the large chamber.
Technical Paper

Improvement of Post-Oxidation for Low-Emission Engines through 3D-CFD Virtual Development

2023-08-28
2023-24-0107
There is a growing need for low-emissions concepts due to stricter emission regulations, more stringent homologation cycles, and the possibility of a ban on new engines by 2035. Of particular concern are the conditions during a cold start, when the Three-Way Catalyst is not yet heated to its light-off temperature. During this period, the catalyst remains inactive, thereby failing to convert pollutants. Reducing the time needed to reach this temperature is crucial to comply with the more stringent emissions standards. The post oxidation by means of secondary air injection, illustrated in this work, is a possible solution to reduce the time needed to reach the above-mentioned temperature. The strategy consists of injecting air into the exhaust manifold via secondary air injectors to oxidize unburned fuel that comes from a rich combustion within the cylinder.
Technical Paper

Experimental Study on the Relationship between Combustion and Vibration in a Gasoline Engine Part 2 Characteristics of Structure’s Exciting Force and Overall Research Summary

2023-05-08
2023-01-1146
Following Part 1 of the previous study, this paper reports the structure’s exciting force and summarize the overall research results. An experimental study was conducted to clarify the relationship between engine combustion and vibration, and to establish technology to suppress it. This study focused on the vehicle interior noise caused by combustion in which vibration transmission is the main component at high speed and high load region. A phenomenon in which both the combustion’s exciting force and the structure’s exciting force are combined is defined as vehicle interior noise caused by combustion. Conventionally, combustion and vibration are often discussed in terms of the average cycle, but considering the nonstationary property of vibration, in this paper analyzed the structure’s exciting force characteristics for vibration in cycle-by-cycle. Analysis was conducted using the combustion indicators clarified in the previous study.
Technical Paper

Experimental Study on the Relationship between Combustion and Vibration in a Gasoline Engine Part1 Study Overview and the Characteristics of Combustion’s Exciting Force

2023-04-11
2023-01-0430
This study focused on the vehicle interior noise caused by combustion in which vibration transmission is the main component at high speed and high load region. A phenomenon in which both the combustion’s exciting force and the structure’s exciting force are combined is defined as vehicle interior noise caused by combustion. Conventionally, combustion and vibration are often discussed in terms of the average cycle, but considering the nonstationary property of vibration, in this paper analyzed the combustion characteristics for cycle-by-cycle and investigated indicators for the combustion’s exciting force. The engine vibration is affected by heat release characteristics even with the same engine structure specifications. The heat release characteristics were determined as indicators for the combustion’s exciting force. Transfer Path Analysis (TPA) revealed that there is piston transmission in the target frequency band.
Technical Paper

Analysis of Cycle-to-Cycle Variation in In-Cylinder Flow and Combustion by Using Simultaneous PIV Measurements on Two Sections

2023-04-11
2023-01-0215
To realize stable combustion in lean or diluted conditions, reducing cycle-to-cycle variations of flow and fuel distribution is important. In this study, the effect of initial flow field was examined by simultaneous Time-Resolved PIV and visualization on two cross-sections in a fully optical-access engine under motoring and firing conditions with homogeneous pre-mixture. As a result, Omega index was defined and plotted on the correlation map between turbulence kinetic energy and CA10 (duration from ignition timing to 10% to the total accumulated heat). The omega index describes the strength of a horizontal flow field that resembles the shape of the Greek letter Omega. The plots with high Omega index were found frequently in the CA10 retarded cycles. On the other hand, the plots with low Omega index have simple tumble flows and the correlation was clearly found.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Analysis of Cylinder to Cylinder Variations in a Turbocharged Spark Ignition Engine at lean burn operations

2022-01-09
2022-32-0044
In recent years, the improvement in the fuel efficiency and reduction in CO2 emission from internal combustion engines has been an urgent issue. The lean burn technology is one of the key technologies to improve thermal efficiency of SI engines. However, combustion stability deteriorates at lean burn operations. The reduction in cycle-to-cycle and cylinder-to-cylinder variations is one of the major issues to adapt the lean burn technique for production engines. However, the details of the causes and mechanisms for the combustion variations under the lean burn operations have not been cleared yet. The purpose of this study is to control cylinder to cylinder combustion variation. A conventional turbocharged direct injection SI engine was used as the test engine to investigate the effect of engine control parameters on the cylinder to cylinder variations. The engine speed is set at 2200 rpm and the intake pressure is set at 58, 78, 98 kPa respectively.
Technical Paper

Numerical Investigation of the Effect of Engine Speed and Delivery Ratio on the High-Speed Knock in a Small Two-Stroke SI Engine

2022-01-09
2022-32-0080
Knocking occurs within the high-speed range of small two-stroke engines used in handheld work equipment. High-speed knock may be affected by the engine speed and delivery ratio. However, evaluation of these factors independently using experimental methods is difficult. Therefore, in this study, these factors were independently evaluated using numerical calculations. The purpose of this study was to clarify the mechanism by which the intensity of high-speed knocking that occurs in small two-stroke engines becomes stronger. The results suggest that temperature inhomogeneity due to insufficient mixing of fresh air and previously burned gas may induce high-speed knocking in the operating range at high engine speeds.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Investigation of H2 Formation Characterization and its Contribution to Post- Oxidation Phenomenon in a Turbocharged DISI Engine

2020-09-15
2020-01-2188
In this research, simulation and experimental investigation of H2 emission formation and its influence during the post-oxidation phenomenon were conducted on a turbo-charged spark ignition engine. During the post-oxidation phenomenon phase, rich air-fuel ratio (A/F) is used inside the cylinder. This rich excursion gives rise to the production of H2 emission by various reactions inside the cylinder. It is expected that the generation of this H2 emission can play a key role in the actuation of the post-oxidation and its reaction rate if enough temperature and mixing strength are attained. It is predicted that when rich combustion inside the cylinder will take place, more carbon monoxide (CO)/ Total Hydro Carbon (THC)/ Hydrogen (H2) contents will arrive in the exhaust manifold. This H2 content facilitates in the production of OH radical which contributes to the post-oxidation reaction and in-turn can aid towards increasing the enthalpy.
Technical Paper

Combustion Enhancement in a Gas Engine Using Low Temperature Plasma

2020-04-14
2020-01-0823
Low temperature plasma ignition has been proposed as a new ignition technique as it has features of good wear resistance, low energy release and combustion enhancement. In the authors’ previous study, lean burn limit could be extended slightly by low temperature plasma ignition while the power supply’s performance with steep voltage rising with time (dV/dt), showed higher peak value of the rate of heat release and better indicated thermal efficiency. In this study, basic study of low temperature plasma ignition system was carried out to find out the reason of combustion enhancement. Moreover, the durability test of low temperature plasma plug was performed to check the wear resistance.
Journal Article

A Study of Ignition Method for Gas Heat Pump Engine Using Low Temperature Plasma

2020-01-24
2019-32-0622
Low temperature plasma ignition has been proposed as a new ignition technique as it has features of good wear resistance, low energy release and combustion enhancement. In the authors’ previous study, lean burn limit could be extended by low temperature plasma ignition while a voltage drop during discharge, leading to the transition to arc discharge, was found. In this study, the structure of plug and power supply’s performance with steep voltage rising with time, dV/dt, are examined to investigate the effects on combustion performance. As a result, comparing three power sources of conventional, IES and steep dV/dt, steep dV/dt showed small cycle-to-cycle variation and shorter combustion period, leading to higher peak value of the rate of heat release and better indicated thermal efficiency by relatively 6% and 4% compared to CIC and IES, respectively.
Technical Paper

Investigation of The Effect of Enhanced In-Cylinder Flow on HCCI Combustion in a Rapid Compression and Expansion Machine

2020-01-24
2019-32-0528
The purpose of this paper is to find a way to extend the high load limit of homogeneous charge compression ignition (HCCI) combustion. A newly developed rapid compression and expansion machine (RCEM) was employed to reproduce the typical HCCI high load condition. The in-cylinder turbulence was created by the special piston which equipped with a flow guide plate. Meanwhile, the ambient temperature distribution in the cylinder was determined by the wall temperature controlling system which was controlled by the independent coolant passages. In addition, the numerical simulation by using large eddy method coupled with a detailed chemical reaction was conducted as well. The results show that HCCI mode is potential to be improved at high load condition in full consideration of in-cylinder temperature, flow, and turbulence.
Technical Paper

Analysis of Cycle-to-Cycle Variation in a Port Injection Gasoline Engine by Simultaneous Measurement of Time Resolved PIV and PLIF

2020-01-24
2019-32-0552
Cycle-to-cycle variation (CCV) of combustion in low load operation is a factor that may cause various problems in engine operation. Variable valve timing and variable ignition timing are commonly used as a means to reduce this variation. However, due to mountability and cost constraints, these methods are not feasible for use in motorcycle engines. Therefore, development of an engine with minimal CCV without utilizing complicated mechanisms or electronic control is required. CCV of combustion may be caused by fluctuations in in-cylinder flow, air-fuel mixture, temperature, residual gas and ignition energy. In this study, the relationship between CCV of combustion, in-cylinder flow fluctuation and air-fuel mixture fluctuation was the primary focus. In order to evaluate in-cylinder flow fluctuation, Time Resolved Particle Image Velocimetry (TR-PIV) technique was utilized.
Technical Paper

Scavenging Phenomena Based Post-oxidation in Exhaust Manifold of a Turbocharged Spark Ignition Engine

2019-12-19
2019-01-2197
In this research, a novel methodology for the post-oxidation in a turbocharged spark ignition (SI) engine is proposed and investigated that can improve the emissions along with the reduction in turbo-lag. In this research, both simulation and experimental activities are performed. The 1-D simulation model was used for the identification of efficient scavenging. Thereafter, experimental validation tests for modeling and post oxidation were conducted on a 4-cylinder turbocharged SI engine. From the results, it was revealed that efficient scavenging and post-oxidation can be obtained at lower speed and higher load. The enthalpy in exhaust manifold increased due to the post-oxidation reaction which in turn increased the temperature and pressure of the exhaust gases and hence emissions reduced. Also, due to the increased enthalpy at turbine upstream, the turbocharger speed increased and as a consequence, reduction in the turbo-lag was observed.
X