Refine Your Search

Topic

Search Results

Technical Paper

0D Modeling of Real-Driving NOx Emissions for a Diesel Passenger Vehicle

2018-09-10
2018-01-1761
NOx emissions from diesel passenger vehicles affect the atmospheric environment. It is difficult to evaluate the NOx emissions influenced by environmental conditions such as humidity and temperature, traffic conditions, driving patterns, etc. In the authors’ previous study, real-driving experiments were performed on city and highway routes using a diesel passenger car with only an exhaust gas recirculation system. A statistical prediction model of NOx emissions was considered for simple estimations in the real world using instantaneous vehicle data measured by the portable emissions measurement system and global positioning system. The prediction model consisted of explanatory variables, such as velocity, acceleration, road gradient, and position of transmission gear. Using the explanatory variables, NOx emissions on the city and highway routes was well predicted using a diesel vehicle without NOx reduction devices.
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

A Study on N2O Formation Mechanism and Its Reduction in a Urea SCR System Employed in a DI Diesel Engine

2012-09-10
2012-01-1745
N₂O is known to have a significantly high global warming potential. We measured N₂O emissions in engine-bench tests by changing the NO/NH₃ ratio and exhaust gas temperature at the oxidation catalyst inlet in a heavy-duty diesel engine equipped with a urea SCR (selective catalytic reduction) system. The results showed that the peak N₂O production ratio occurred at an exhaust gas temperature of around 200°C and the maximum value was 84%. Moreover, the N₂O production ratio increased with increasing NO/NH₃. Thus, we concluded that N₂O is produced via the NO branching reaction. Based on our results, two methods were proposed to decrease N₂O formation. At low temperatures ~200°C, NO should be reduced by controlling diesel combustion to lower the contribution of NO to N₂O production. This is essential because the SCR system cannot reduce NOx at low temperatures.
Technical Paper

BSFC Improvement and NOx Reduction by Sequential Turbo System in a Heavy Duty Diesel Engine

2012-04-16
2012-01-0712
Reduction of exhaust emissions and BSFC has been studied using a high boost, a wide range and high-rate EGR in a Super Clean Diesel, six-cylinder heavy duty engine. In the previous single-turbocharging system, the turbocharger was selected to yield maximum torque and power. The selected turbocharger was designed for high boosting, with maximum pressure of about twice that of the current one, using a titanium compressor. However, an important issue arose in this system: avoidance of high boosting at low engine speed. A sequential and series turbo system was proposed to improve the torque at low engine speeds. This turbo system has two turbochargers of different sizes with variable geometry turbines. At low engine speed, the small turbocharger performs most of the work. At medium engine speed, the small turbocharger and large turbocharger mainly work in series.
Technical Paper

Effective BSFC and NOx Reduction on Super Clean Diesel of Heavy Duty Diesel Engine by High Boosting and High EGR Rate

2011-04-12
2011-01-0369
Reduction of exhaust emissions and BSFC was studied for high pressure, wide range, and high EGR rates in a Super-clean Diesel six-cylinder heavy duty engine. The GVW 25-ton vehicle has 10.52 L engine displacement, with maximum power of 300 kW and maximum torque of 1842 Nm. The engine is equipped with high-pressure fuel injection of a 200 MPa level common-rail system. A variable geometry turbocharger (VGT) was newly designed. The maximum pressure ratio of the compressor is about twice that of the previous design: 2.5. Additionally, wide range and a high EGR rate are achieved by high pressure-loop EGR (HP-EGR) and low pressure-loop EGR (LP-EGR) with described VGT and high-pressure fuel injection. The HP-EGR can reduce NOx concentrations in the exhaust pipe, but the high EGR rate worsens smoke. The HP-EGR system layout has an important shortcoming: it has great differences of the intake EGR gas amount into each cylinder, worsens smoke.
Technical Paper

Study of NOx Emissions Reduction Strategy for a Naturally Aspirated 4-Cylinder Direct Injection Hydrogen ICE

2010-10-25
2010-01-2163
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOX) emissions. There are many possible combinations of injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, NOX emissions of natural aspirated 4 cylinders engine with management strategies involving the injection timing, ignition timing, lambda and the EGR rate were evaluated under a Japanese JE05 emissions test cycle. Finally, the paper projects the potential of direct injection hydrogen engine for obtaining high output power and attaining low NOX emissions of 0.7 g/kWh under the emission test cycle.
Technical Paper

Controlling the Heat Release in HCCI Combustion of DME with Methanol and EGR

2010-05-05
2010-01-1489
The effects of methanol and EGR on HCCI combustion of dimethyl ether have been tested separately in a diesel engine. The engine was equipped with a common rail injection system which allowed for random injection of DME. The engine could therefore be operated either as a normal DI CI engine or, by advancing the injection timing 360 CAD, as an HCCI engine. The compression ratio of the engine was reduced to 14.5 by enlarging the piston bowls. The engine was operated in HCCI mode with DME at an equivalence ratio of 0.25. To retard the combustion timing, methanol was port fuel injected and the optimum quantity required was determined. The added methanol increased the BMEP by increasing the total heat release and retarding the combustion to after TDC. Engine knock was reduced with increasing quantities of methanol. The highest BMEP was achieved when the equivalence ratio of methanol was around 0.12 at 1000 RPM, and around 0.76 at 1800 RPM. EGR was also used to retarding the timing.
Technical Paper

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine

2010-04-12
2010-01-1120
For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Technical Paper

Spray and Combustion Characteristics of Reformulated Biodiesel with Mixing of Lower Boiling Point Fuel

2007-04-16
2007-01-0621
Authors propose the reformulation technique of physical properties of Biodiesel Fuel (BDF) by mixing lower boiling point fuels. In this study, waste cooking oil methyl ester (B100), which have been produced in Kyoto city, is used in behalf of BDF. N-Heptane (C7H16) and n-Dodecane (C12H26) are used as low and medium boiling point fuel. Mixed fuel of BDF with lower boiling point fuels have lighter quality as compared with neat BDF. This result is based on the chemical-thermo dynamical liquid-vapor equilibrium theory. This paper describes fundamental spray and combustion characteristics of mixed fuel of B100 with lower boiling point fuels as well as the reformulation technique. By mixing lower boiling point fuel, lighter quality fuels can be refined. Thus, mixed fuels have higher volatility and lower viscosity. Therefore, vaporization of mixed fuel spray is promoted and liquid phase penetration of mixed fuel shortens as compared with that of neat BDF.
Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Technical Paper

Development of DME Engine for Heavy-duty Truck

2006-04-03
2006-01-0052
In recent years, attention has focused on smokeless, sulfur-free dimethyl ethyl (DME) as a clean fuel for heavy-duty diesel vehicles [1]. In this development, the DME engine applied for 20-ton GVW truck was developed under the auspices of the Ministry of Land, Infrastructure and Transport of Japan, the first known instance worldwide. With careful design of the fuel system considering DME's unique fuel characteristics and suitable combustion improvement, higher torque was obtained with DME, compared to diesel fueling. and also use of the proper EGR and catalyst, exhaust emissions levels were generally less than one-fourth of new long-term regulation value promulgated in 2005 Japan.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Technical Paper

Emission Characteristics of a Urea SCR System under Catalysts Activated and De-Activated Conditions

2006-04-03
2006-01-0639
Urea SCR (Selective Catalytic Reduction) system has high potential of reducing NOx. But such as system durability and safety under deteriorated catalysts conditions have not been well enough clarified because it is new technology for vehicles. In this paper, current NOx emission level of an engine equipped with urea SCR system is discussed and then exhaust emission characteristics were analyzed when the SCR catalyst and/or oxidation catalyst lose their functions. When both SCR and oxidation catalyst were de-activated, not only NOx but also PM increased remarkably, which were much more than the engine-out emissions. Oxidation catalyst downstream of SCR catalyst was effective to suppress such deteriorations.
Technical Paper

Development of NOx Storage Reduction System for a Heavy-Duty Dimethyl Ether Engine

2005-04-11
2005-01-1088
To establish NOx Storage Reduction(NSR) system, the effect of post fuel injection in exhaust pipe with rich spike on NOx conversion rate was investigated. With post fuel injection, a higher injection pressure and the rich spike close to the NSR catalyst (just before the NSR catalyst) shows better NOx reduction performance. Based on these results, exhaust emission was tested in transient driving mode (JE-05). In this driving mode test, it was possible to reduce NOx emission less than 0.5 g/kWh for only a 1% of fuel penalty controlling the rich spike injection precisely.
Technical Paper

Development of a Real-time NH3 Gas Analyzer Utilizing Chemi-luminescence Detection for Vehicle Emission Measurement

2004-10-25
2004-01-2907
Recently, after-treatment techniques for diesel engine emission have made remarkable progress with the development of suitable De-NOx catalysts. The urea-injection SCR system is one of the candidates for a high efficiency De-NOx method for diesel engine emissions. This system reduces NOx through a reaction with ammonia (NH3) that is generated from injected urea. In this system, it is very important to control the amount and timing of the urea injection so as to minimize the NH3 gas slip. Therefore, NH3 gas measurement is becoming important during the development of NOx after-treatment systems even though NH3 is not a target component of the current emission regulations. In this paper, a new NH3 gas analyzer utilizing a chemi-luminescence detection (CLD) method has been developed. The new NH3 analyzer consists of dual detectors (DCLDs) and a furnace for a NH3 oxidization catalyst. Real-time concentration of NH3 can be calculated from the difference of NOx readings of two detectors.
Technical Paper

Effects of Injection Pressure on Combustion of a Heavy Duty Diesel Engine With Common Rail DME Injection Equipment

2004-06-08
2004-01-1864
Recently there has been much interest in Dimethyl Ether (DME) as a new fuel for diesel cycle engines. DME combines the advantages of a high cetane number with soot-free combustion, which makes it eminently suitable for compression engines. According to the latest engine test results, however, DME engine energy consumption was inferior to a diesel engine's under a heavy load. DME probably requires strong air-fuel mixing and short fuel injection. Some tests have reported that DME engine performance almost equals a diesel engine's by injecting high rail pressure DME into standard or slightly modified diesel common rail injection equipment. The effect, however, of higher injection pressure on the rates of heat release and spray distribution is unclear. In this study the rail pressure levels examined included 20, 25, 30, and 35 MPa. The results obtained from a single cylinder heavy-duty engine test show that the rate of heat release increases during the premixed combustion phase.
Technical Paper

Development of NOx Storage Reduction System for a Dimethyl Ether Engine

2004-06-08
2004-01-1832
In recent years, the dimethyl ether (DME) fuel has been attracting attention as an alternative engine in terms of diesel utilization. This is (a) because its cetane number is close to that of diesel fuel, (b) an innovative chemical process has been developed to produce DME efficiently from natural gas and coal, and (c) DME as a fuel has fewer environment-polluting characteristics than diesel fuel. Inasmuch as DME fuel have lower molecular weights, a molecular C-O bond, and are much more volatile or evaporative than diesel fuel, it is possible to control particulate matters much more easily when DME is used instead of diesel fuel. As for NOx, however, even when using DME, there still remain problems under stringent exhaust gas regulations. Developed and optimized accordingly has been the NOx storage-reduction (NSR) system, using the DME engine with a common-rail injection system. The NSR system is coated with an NOx storage catalyst principally comprised of Pt and Rh.
X