Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Analysis and optimization for generated axial force of Adjustable Angular Roller tripod joint

2024-04-09
2024-01-2887
The tripod constant velocity joint (CVJ) has been widely used in mechanical systems due to its strong load-bearing capacity, high efficiency, and reliability. It has become the most commonly used plunging-type CVJ in automotive drive-shaft. A generated axial force (GAF) with a third-order characteristic of driven shaft speed is caused by the internal friction and motion characteristics in a tripod joint. The large GAF has a negative impact on the NVH (Noise, Vibration, and Harshness) characteristics of automobiles, and this issue is particularly prominent in new energy vehicles. A multi-body dynamic model of the Adjustable Angular Roller (AAR) tripod CVJ is developed to calculate and analyze the GAF. To describe the internal motion of the AAR tripod CVJ, the contact interactions between the roller and the track or the trunnion were modeled using non-linear equivalent spring-damping models for contact collision forces and modified Coulomb friction model for friction.
Technical Paper

Hierarchical Vehicle Stability Control Strategy Based on Unscented Kalman Filter Estimation

2022-03-29
2022-01-0294
High-speed vehicle is prone to instability under bad road conditions, causing many safety accidents such as tail-flicking and overturning. Stability control could assist vehicle to drive safely and stably by adjusting the additional yaw moment. However, most of the existing stability control strategies directly invoke the information of the sideslip angle of the centroid that is difficult to obtain on the vehicle, and carry out complex controller design, which deviates from the actual application. In order to achieve a complete set of stability control architecture oriented to practical applications, this paper designs a hierarchical vehicle stability control strategy based on differential braking and state estimation technology.
Technical Paper

A Comparison Study on the Performance of the Multi-Stroke Cycle SI Engine under Low Load

2021-04-06
2021-01-0530
Pumping Mean Effective Pressure (PMEP) is the main factor limiting the improvement of thermal efficiency in a spark-ignition (SI) engine under low load. One of the ways to reduce the pumping loss under low load is to use Cylinder DeActivation (CDA). The CDA aims at reducing the firing density (FD) of the SI engine under low load operation and increasing the mass of air-fuel mixture within one cycle in one cylinder to reduce the throttling effect and further reducing the PMEP. The multi-stroke cycles can also reduce the firing density of the SI engine after some certain reasonable design, which is feasible to improve the thermal efficiency of the engine under low load in theory. The research was carried out on a calibrated four-cylinder SI engine simulation platform. The thermal efficiency improvements of the 6-stroke cycle and 8-stroke cycle to the engine performance were studied compared with the traditional 4-stroke cycle under low load conditions.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Technical Paper

Natural Flame Luminosity and Emission Spectra of Diesel Spray Flame under Oxygen-Enriched Condition in an Optical Constant Volume Vessel

2018-09-10
2018-01-1781
The application of oxygen-enriched or oxy-fuel combustion coupled with carbon capture and storage technology has zero carbon dioxide emission potential in the boiler and gas turbine of the power plant. However, the oxygen-enriched combustion with high oxygen level has few studies in internal combustion engines. The fundamental issues and challenges of high oxygen level are the great differences in the physical properties and chemical effects compared with the combustion in air condition. As a consequence, the diesel spray combustion characteristics at high oxygen level were investigated in an optical constant volume vessel. The oxygen volume fraction of tested gas was from 21% to 70%, buffered with argon. The high-speed color camera was used to record the natural flame luminosity.
Technical Paper

Effective Application of CAE Guidance for Hemmed Closures Throughout the Vehicle Development Process

2017-03-28
2017-01-1310
The perceived quality of automotive closures (flushness and margin) is strongly affected by flanging and hemming of the outer panels and assembly respectively. To improve the quality of closures, the traditional hardware approach needs significant amount of time and costly die re-cuts and trials with prototype panels. Thus, such approach may delay the vehicle program and increase the overall investment cost. The proposed CAE methodology provides upfront design guidance to dies and panels, reduces time and increases cost savings associated with flanging and hemming while improving overall quality of the closures. In this proposed approach, as a first step, analytical formulae and design of experiments (DOE) are followed to estimate magnitude of design parameters of panels and dies as the upfront design guidance.
Technical Paper

Design Optimization of Crankshaft Bearing Based on Crankshaft-Bearing System

2016-04-05
2016-01-1388
In current design optimization of engine crankshaft bearing, only the crankshaft bearing is considered as the studying object. However, the corresponding relations of major structure dimensions exist between the crankshaft and the crankshaft bearing in engine, and there are the interaction effects between the crankshaft and the crankshaft bearing during the operation of engine. In this paper, the crankshaft-bearing system of a four-cylinder engine is considered as the studying object, the multi-objective design optimization of crankshaft bearing is developed. The crankshaft mass and the total frictional power loss of crankshaft bearings are selected as the objective functions in the design optimization of crankshaft bearing. The Particle Swarm Optimization algorithm is used in the optimization calculation. The optimization results are compared to the ones of original engine design and the single-objective design optimization of crankshaft bearing.
Technical Paper

Numerical Study of the RCCI Combustion Processes Fuelled with Methanol, Ethanol, n-Butanol and Diesel

2016-04-05
2016-01-0777
In the current, numerical study RCCI combustion and emission characteristics using various fuel strategies are investigated, including methanol, ethanol, n-butanol and gasoline as the low reactivity fuel, and diesel fuel as the high reactivity fuel. A reduced Primary Reference Fuel (PRF)-alcohol chemical kinetic mechanism was coupled with a computational fluid dynamic (CFD) code to predict RCCI combustion under various operating conditions. The results show that a higher quantity of diesel was required to maintain the same combustion phasing with alcohol-diesel fuel blends, and the combustion durations and pressure rise rates of methanol-diesel (MD) and ethanol-diesel (ED) cases were much shorter and higher than those of gasoline-diesel (GD) and n-butanol-diesel (nBD) cases. The simulations also investigated the sensitivities of the direct injection strategies, intake temperature and premixed fuel ratio on RCCI combustion phasing control.
Technical Paper

Simulation Analysis on Controllability of Hydraulic Electrical Energy Regenerative Semi-Active Suspension

2016-04-05
2016-01-0443
A vehicular hydraulic electrical energy regenerative semi-active suspension(HEERSS) was presented, and its working principle and performance were analyzed. Firstly, configuration and working principle of the HEERSS were described; Secondly, kinetic equation of HEERSS was deduced, and a skyhook controller was designed for HEERSS. The traditional skyhook control strategy should be changed for the characteristic of HEERSS, because the damping force during extension stroke could be controlled, but not in compression stroke. Thirdly, the performance of HEERSS was compared with passive suspension(PS), traditional semi-active suspension(TSS). The simulation results indicated that the performance of HEERSS would be compromise between TSS and PS, but the HEERSS could harvest vibration energy which was advanced than TSS and PS.
Journal Article

Allocation-Based Control with Actuator Dynamics for Four-Wheel Independently Actuated Electric Vehicles

2015-04-14
2015-01-0653
This paper proposes a novel allocation-based control method for four-wheel independently actuated electric vehicles. In the proposed method, both actuator dynamics and input/output constraints are fully taken into consideration in the control design. First, the actuators are modeled as first-order dynamic systems with delay. Then, the control allocation is formulated as an optimization problem, with the primary objective of minimizing errors between the actual and desired control outputs. Other objectives include minimizing the power consumption and the slew rate of the actuator outputs. As a result, this leads to frequency-dependent allocation that reflects the bandwidth of each actuator. To solve the optimization problem, an efficient numerical algorithm is employed. Finally the proposed control allocation method is implemented to control a four-wheel independently actuated electric vehicle.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Allocation-Based Fault Tolerant Control for Electric Vehicles with X-by-Wire

2014-04-01
2014-01-0866
This paper proposed a novel fault-tolerant control method based on control allocation via dynamic constrained optimization for electric vehicles with XBW systems. The total vehicle control command is first derived based on interpretation on driver's intention as a set of desired vehicle body forces, which is further dynamically distributed to the control command of each actuator among vehicle four corners. A dynamic constrained optimization method is proposed with the cost function set to be a linear combination of multiple control objectives, such that the control allocation problem is transformed into a linear programming formulation. An analytical yet explicit solution is then derived, which not only provides a systematic approach in handling the actuation faults, but also is efficient and real-time feasible for in-vehicle implementation. The simulation results show that the proposed method is valid and effective in maintaining vehicle operation as expected even with faults.
Journal Article

Improved Chemical Kinetics Numerics for the Efficient Simulation of Advanced Combustion Strategies

2014-04-01
2014-01-1113
The incorporation of detailed chemistry models in internal combustion engine simulations is becoming mandatory as local, globally lean, low-temperature combustion strategies are setting the path towards a more efficient and environmentally sustainable use of energy resources in transportation. In this paper, we assessed the computational efficiency of a recently developed sparse analytical Jacobian chemistry solver, namely ‘SpeedCHEM’, that features both direct and Krylov-subspace solution methods for maximum efficiency for both small and large mechanism sizes. The code was coupled with a high-dimensional clustering algorithm for grouping homogeneous reactors into clusters with similar states and reactivities, to speed-up the chemical kinetics solution in multi-dimensional combustion simulations.
Technical Paper

A Real-Time Virtual Simulation Environment for Advanced Driver Assistance System Development

2014-04-01
2014-01-0194
This paper presents a novel real-time virtual simulation environment for advanced driver assistance systems (ADAS). The proposed environment mainly includes a 3D high-fidelity virtual driving environment developed with computer graphics technologies, a virtual camera model and a real-time hardware-in-the-loop (HIL) system with a driver simulator. Some preliminary simulation and experiment have been conducted to verify that the proposed virtual environment along with the image generated by a virtual camera model is valid with sufficient fidelity, and the real-time HIL development system with driver in the loop is effective in the early design, test and verification of ADAS systems.
Technical Paper

Experimental and Modeling Study of Biodiesel Surrogates Combustion in a CI Engine

2013-04-08
2013-01-1130
This work concerns the oxidation of biodiesel surrogates in a CI engine. An experimental study has been carried out in a single-cylinder common-rail CI engine with soybean biodiesel and two biodiesel surrogates containing neat methyl decanoate and methyl decanoate/n-heptane blends. Tests have been conducted with various intake oxygen concentrations ranging from 21% to approximately 9% at intake temperatures of 25°C and 50°C. The results showed that the ignition delay and smoke emissions of neat methyl decanoate were closer to that of soybean biodiesel as compared with methyl decanoate/n-heptane blends. A reduced chemical kinetic mechanism for the oxidation of methyl decanoate has been developed and applied to model internal combustion engines. A KIVA code, coupled with the Chemkin chemistry solver, was used as the computational platforms. The effects of various intake oxygen concentrations on the in-cylinder emissions of OH and soot were discussed.
Technical Paper

Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants

2012-04-16
2012-01-0134
This paper describes numerical simulations that compare the performance of two combustion CFD models against experimental data, and evaluates the effects of combustion and spray model constants on the predicted combustion and emissions under various operating conditions. The combustion models include a Characteristic Time Combustion (CTC) model and CHEMKIN with reduced chemistry models integrated in the KIVA-3Vr2 CFD code. The diesel spray process was modeled using an updated version of the KH-RT spray model that features a gas jet submodel to help reduce numerical grid dependencies, and the effects of both the spray and combustion model constants on combustion and emissions were evaluated. In addition, the performance of two soot models was compared, namely a two-step soot model, and a more detailed model that considers soot formation from PAH precursors.
X