Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Next-Generation Environmentally Friendly Vehicles Development and Commercialization Project (3rd Stage) in Japan

2013-03-10
2012-01-2085
As alternatives to heavy-duty vehicles, this project seeks to promote the development of Next-Generation EFVs, which will present a solution to the severe air pollution problem particularly in big cities, and drastically improve exhaust gas emissions and reduce carbon dioxide emissions in order to lessen the contribution to global warming. Ministry of Land, Infrastructure, Transport and Tourism (MLIT) started the Next-Generation Environmentally Friendly Vehicles Development and Commercialization Project in 2002. MLIT at that time entrusted this project to National Traffic Safety and Environment Laboratory (NTSEL). NTSEL as a core research organization organized a cooperative system with automobile manufacturers, suppliers, universities, academic experts, that is to say, “industry-academic-government” and launched the development activities.
Technical Paper

Effect of Fuel Properties of Biodiesel on Its Combustion and Emission Characteristics

2011-08-30
2011-01-1939
The use of biofuel is essential for the reduction of greenhouse gas emission. This paper highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO₂ emission from combustion of biodiesel is defined to be equivalent to the CO₂ volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, biodiesel is known to increase the NOx emission when compared with operating with conventional diesel fuel, then suppressing this increase is regarded as a critical issue. This study is intended to identify the fuel properties of biodiesel free from increase in the NOx emission.
Technical Paper

Development of High Pressure H2 Gas Injectors, Capable of Injection at Large Injection Rate and High Response Using a Common-rail Type Actuating System for a 4-cylinder, 4.7-liter Total Displacement, Spark Ignition Hydrogen Engine

2011-08-30
2011-01-2005
Key requirements of engines for vehicles are large output power and high efficiency, low emission as well as small size and light weight. Hydrogen combustion engines with direct injection have the characteristics to meet these factors. Tokyo City University, former Musashi Institute of Technology, has studied hydrogen fueled engines with direct injection since 1971. The key technology in the development of hydrogen fueled engines is the hydrogen injector for direct injection with the features such as high injection rate, high response and no hydrogen gas leakage from the needle valve of the hydrogen injector. A common-rail type system to actuate the needle valves of the high pressure hydrogen injectors was intentionally applied to fulfill good performances such as large injection rate, high response and no hydrogen gas leakage.
Technical Paper

Exhaust Emission Characteristics of Commercial Vehicles Fuelled with Biodiesel

2010-10-25
2010-01-2276
The application of biodiesel as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO₂ emission, because biodiesel is produced from renewable biomass resources. In Japan, neat biodiesel derived from waste cooking oil has often been applied to commercial vehicles. However, it is possible that the difference of fuel properties between conventional diesel fuel and biodiesel causes the problems on exhaust emission characteristics of diesel engine. Therefore, it is necessary to clarify the effect of biodiesel fuelling on exhaust emissions from commercial vehicles. Light-duty garbage trucks and heavy-duty diesel buses which were actually fueled with biodiesel in Kyoto, Japan, were used for test vehicles in this study. The exhaust emissions from these vehicles during JE05 mode tests were compared between biodiesel derived from waste cooking oil and conventional diesel fuel.
Journal Article

Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System

2010-10-25
2010-01-2278
The use of biomass fuels for vehicles has been a focus of attention all over the world in terms of prevention of global warming, effective utilization of resources and local revitalization. For the purpose of beneficial use of unused biomass resources, the movement of the use of bioethanol and biodiesel made from them has spread in Japan. In Japan, biodiesel is mainly made from waste cooking oil collected by local communities or governments, and in terms of local production for local consumption, it is used as neat fuel (100% biofuel) or mixed with diesel fuel in high concentration for the vehicles. On the other hand, extremely low emission level must be kept for not only gasoline vehicles but also diesel vehicles in the post new long-term regulation implemented from 2009 in Japan.
Technical Paper

Effect of Biodiesel Blending on Emission Characteristics of Modern Diesel Engine

2008-10-06
2008-01-2384
The use of biodiesel fuels as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO2 emission, because biodiesel is produced from renewable biomass resources. Biodiesel is usually blended to conventional diesel fuel in various proportions. It is possible that this biodiesel blending causes the problems on emission characteristics of modern diesel engine, because it could be confirmed that the application of neat biodiesel to modern diesel engines whose control parameters were optimized for conventional diesel fuel deteriorated the emission performances. It is necessary to clarify the effect of biodiesel blending on exhaust emissions of modern diesel engine. Rapeseed oil methyl ester (RME) was selected as a biodiesel used in this study.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Optimization of Engine System for Application of Biodiesel Fuel

2007-07-23
2007-01-2028
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because biodiesel is carbon neutral in principle. However, biodiesels yield an increase in NOx emission from conventional diesel engine, compared with diesel fuel case. Therefore, some strategies are needed for meeting the future emission regulations when using biodiesel. In this study, rapeseed oil methyl ester (RME) was applied to diesel engine equipped with exhaust gas recirculation (EGR) system and NOx storage reduction (NSR) catalyst. NOx reduction rate of NSR catalyst was drastically decreased by using RME, even if injection quantity of RME for rich spike was enhanced. However, an increase in EGR rate could reduce NOx emission without the deterioration in smoke and PM emissions.
Technical Paper

Analysis of Reaction Mechanisms Controlling Cool and Thermal Flame with DME Fueled HCCI Engines

2006-10-16
2006-01-3299
Autoignition in the homogeneous charge compression ignition (HCCI) process typically exhibits heat release in two stages called cool flame and thermal flame. The mechanisms governing these two stages were investigated using a DME-fueled HCCI engine and numerical simulations. Composition analysis after cool flame showed that the cool flame is explained by a chain reaction mechanism in which the chain terminator is the intermediate species formed in cool flame. In the case of thermal flame, although the chain reaction mechanism is complex, the behavior is clearly described by thermal explosion theory in which the rate-determining reaction is H2O2 decomposition.
Technical Paper

Evaluation of Regulated Materials and Ultra Fine Particle Emission from Trial Production of Heavy-Duty CNG Engine

2006-10-16
2006-01-3397
A prototype CNG engine for heavy-duty trucks has been developed. The engine had sufficient output in practical use, and the green-house gas emission rate was below that of the base diesel engine. Furthermore, the NOx emission rate was reduced to 0.16 g/kWh in the JE05 mode as results of having fully adjusted air fuel ratio control. The measured emission characteristics of particles from the prototype CNG engine demonstrated that oil consumption was related to the number of particles. Moreover, when oil consumption is at an appropriate level, the accumulation mode particles are significantly reduced, and the nuclei mode particles are fewer than those of diesel-fueled engines.
Technical Paper

The Cold Flow Performance and the Combustion Characteristics with Ethanol Blended Biodiesel Fuel

2005-10-24
2005-01-3707
The purpose of this study is to improve low-temperature flow-properties of biodiesel fuels (BDF) by blending with ethanol and to analyze the combustion characteristics in a diesel engine fueled with BDF/ethanol blended fuel. Because ethanol has a lower solidifying temperature, higher oxygen content, lower cetane number, and higher volatility than BDF, ethanol blending would have a large effect on cold flow performance, mixture formation, ignition, combustion, and exhaust emissions. The engine experiments in the study were performed with a diesel engine and blends of BDF and ethanol at different blending ratios. The cold flow performance of the blended fuels was evaluated by determining the fuel cloud point. The experimental results show that the ethanol blending lowers the cloud point of the blended fuel and significantly reduces smoke emissions from the engine without deteriorating other emissions or thermal efficiency.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

Combustion Improvement and Exhaust Emissions_Characteristics in a Direct Injection Natural Gas Engine by Throttling and Exhaust Gas Recirculation

2001-03-05
2001-01-0737
A natural gas direct injection test engine equipped with a newly developed natural gas injector was built. High total hydrocarbon (THC) emission at part-load and high NOx emission at high-load remain as problems for direct injection natural gas engines. THC reduction and combustion improvement by throttling and NOx reduction by EGR were investigated. The following results were obtained: (1) the combustion at light and medium load conditions is improved by throttling. It is possible to improve the thermal efficiency at light-load in spite of the pumping loss by throttling. THC emissions are greatly decreased in this condition; (2) a large NOx reduction can be obtained without combustion deterioration by appropriate EGR at high-load conditions; and (3) it is possible to decrease both THC and NOx emissions by both throttling and EGR at part-load conditions.
Technical Paper

Performance and Emission Characteristics of a DI Diesel Engine Operated on Dimethyl Ether Applying EGR with Supercharging

2000-06-19
2000-01-1809
This research investigates engine performance and the possibility of reducing exhaust emissions by using Dimethyl Ether (DME). There are high expectations for DME as a new alternative fuel for diesel engines for heavy-duty vehicles. In this experiment, a single cylinder direct-injection diesel engine with displacement of 1.05 liter and a compression ratio of 18:1 was used as a base engine. Common rail type DME fuel injection equipment for the single cylinder engine experiment was installed, and direct injection in the cylinder of DME was tried. Results indicated that high injection pressure, high swirl ratio, and supercharging using multi-hole injectors are effective for combustion promotion in the DME fueled diesel engine (DME engine). The output of the DME engine using supercharging with an intercooler and EGR was higher than that of a diesel engine. By increasing the EGR rate Nox emission was reduced to about 1/3 that of the diesel engine. Smoke was not completely emitted.
Technical Paper

NOx Reduction on Direct Injection Natural Gas Engines

1999-10-25
1999-01-3608
Direct injection natural gas engines need to produce in the mixing process between the fuel jet and the air in the cylinder a “stratified” fuel-air mixture, with an easily ignitable composition near the spark plug at the time of ignition. Stratified-charge engines have a tendency to produce high NOx emissions due to the high temperature of burning areas at the start of combustion since the fuel-air mixture is not uniform. Therefore, it is necessary to reduce NOx emissions from direct injection natural gas engines. The objective of this study is to investigate measures to reduce emissions, especially NOx emissions, from direct injection natural gas engines. A single cylinder test engine was equipped with a newly developed high-pressure electromagnetic injector and a spark plug.
X