Refine Your Search

Topic

Search Results

Technical Paper

Effect of Thermodynamic Conditions on Spark Ignition to Compression Ignition in Ultra-Lean Mixture Using Rapid Compression Machine

2019-04-02
2019-01-0963
Compression ratio and specific heat ratio are two dominant factors influencing engine thermal efficiency. Therefore, ultra-lean burn may be one method to deal with increasingly stringent fuel consumption and emission regulations in the approaching future. To achieve high efficiency and clean combustion, innovative combustion modes have been applied on research engines including homogeneous charge compression ignition (HCCI), spark-assisted compression ignition (SACI), and gasoline direct-injection compression ignition (GDCI), etc. Compared to HCCI, SACI can extend the load range and more easily control combustion phase while it is constrained by the limit of flame propagation. For SACI with ultra-lean burn in engines, equivalence ratio (φ), rich-fuel mixture around spark plug, and supercharging are three essentials for combustion stability.
Technical Paper

An Optical Study on the Combustion of Gasoline/PODEn Blends in a Constant Volume Vessel

2018-09-10
2018-01-1748
Polyoxymethylene dimethyl ethers (PODEn) have high cetane number, high oxygen content and high volatility, therefore can be added to gasoline to optimize the performance and soot emission of Gasoline Compression Ignition (GCI) combustion. High speed imaging was used to investigate the spray and combustion process of gasoline/PODEn blends (PODEn volume fraction 0%-30%) under various ambient conditions and injection strategies in a constant volume vessel. Results showed that with an increase of PODEn proportion from 10% to 30%, liquid-phase penetration of the spray increased slightly, ignition delay decreased from 3.8 ms to 2.0 ms and flame lift off length decreased 29.4%, causing a significant increase of the flame luminance. For blends with 20% PODEn, when ambient temperature decreased from 893 K to 823 K, the ignition delay increased 1.3 ms and the flame luminance got lower.
Technical Paper

Improving Combustion and Emission Characteristics in Heavy-Duty Natural-Gas Engine by Using Pistons Enhancing Turbulence

2018-09-10
2018-01-1685
Compressed Natural Gas (CNG), because of its low cost, high H/C ratio, and high octane number, has great potential in automotive industry, especially for heavy-duty commercial vehicles. However, relative slow flame speed of natural gas leads to long combustion duration and low thermal efficiency and tends to cause knock combustion at high load, which will aggravate engine thermal load and reliability. Enhancing turbulence intensity in combustion chamber is an effective way to accelerate flame propagation speed and improve combustion performance. In this study, the flow simulations of several piston bowls with different inner-convex forms were carried out using three-dimensional computational fluid dynamics (3D-CFD) software CONVERGE. The numerical results showed the piston bowls with inner-convex could disturb the charge swirl motion and enhance turbulence of different intensity. A hexagram geometry bowl was proved to have the best function in strengthening turbulence intensity.
Technical Paper

Experimental Study of Lean Mixture Combustion at Ultra-High Compression Ratios in a Rapid Compression Machine

2018-04-03
2018-01-1422
In order to meet increasingly stringent fuel consumption and emission regulations, more attentions are paid to improve engine efficiency. A large amount of energy-saving technologies have been applied in automotive field especially in gasoline engines. It is well known that lean burn and ultra-high compression ratio technologies are two basic and important methods to increase efficiency. In this paper, a rapid compression machine was employed to study combustion process of lean iso-octane mixture at ultra-high compression ratios (16 to 19:1). Regardless of flammability of the mixture, spark was triggered at the timing right after the end of compression, then, the flame propagation and/or auto-ignition can be recorded using high-speed photography simultaneously. The effects of equivalence ratio (φ), compression ratio (ε), dilution ratio, and effective temperature (Teff) on the combustion process was investigated.
Technical Paper

Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE)/ Wide Distillation Fuel (WDF) Blends in Diesel Engine

2018-04-03
2018-01-0926
Wide Distillation Fuel (WDF), with a distillation range from Initial Boiling Point of gasoline to Final Boiling Point of diesel, can be easily gained directly by blending diesel with gasoline. However, the reduced auto-ignitability of WDF could lead to higher HC emissions. Polyoxymethylene Dimethyl Ethers (PODE), with good volatility and oxygen content of up to 49%, have great potential to improve combustion and emission characteristics, especially for soot reduction. Experiments were carried out in a light-duty four-cylinder diesel engine fueled with neat diesel, gasoline/diesel blends (GD), GD/PODE blends (GDP) and the combustion and emission characteristics were carefully examined. Results showed that GDP had the lowest PM emission and diesel had the poorest one among the three fuels. Due to the addition of gasoline and the relatively poor ignitability, GD had lower combustion efficiency and higher Soluble Organic Fraction (SOF) emissions than diesel.
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
Journal Article

Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether

2017-10-08
2017-01-2336
Polyoxymethylene Dimethyl Ether (PODEn) is a promising green additive to diesel fuel, owing to the unique chemical structure (CH3O[CH2O]nCH3, n≥2) and high cetane number. Together with the general wide-distillation fuel (WDF), which has an attractive potential to reduce the cost of production of vehicle fuel, the oxygenated WDF with PODEn can help achieve a high efficiency and low emissions of soot, NOx, HC, and CO simultaneously. In this paper, the first detailed reaction mechanism (225 species, 1082 reactions) which can describe the ignition characteristics of PODE1 and PODE3 at low temperature was developed.
Journal Article

Impact of Particle Characteristics and Engine Conditions on Deposit-Induced Pre-Ignition and Superknock in Turbocharged Gasoline Engines

2017-10-08
2017-01-2345
Low Speed Pre-Ignition (LSPI), also referred to as superknock or mega-knock is an undesirable turbocharged engine combustion phenomenon limiting fuel economy, drivability, emissions and durability performance. Numerous researchers have previously reported that the frequency of Superknock is sensitive to engine oil and fuel composition as well as engine conditions in controlled laboratory and engine-based studies. Recent studies by Toyota and Tsinghua University have demonstrated that controlled induction of particles into the combustion chamber can induce pre-ignition and superknock. Afton and Tsinghua recently developed a multi-physics approach which was able to realistically model all of the elementary processes known to be involved in deposit induced pre-ignition. The approach was able to successfully simulate deposit induced pre-ignition at conditions where the phenomenon has been experimentally observed.
Technical Paper

PLII-LEM and OH* Chemiluminescence Study on Soot Formation in Spray Combustion of PODEn-Diesel Blend Fuels in a Constant Volume Vessel

2017-10-08
2017-01-2329
Polyoxymethylene dimethyl ethers (PODEn) are promising alternative fuel candidates for diesel engines because they present advantages in soot reduction. This study uses a PODEn mixture (contains PODE3-6) from mass production to provide oxygen component in blend fuels. The spray combustion of PODEn-diesel bend fuels in a constant volume vessel was studied using high speed imaging, PLII-LEM and OH* chemiluminescence. Fuels of several blend ratios are compared with pure diesel. Flame luminance data show a near linear decrease tendency with the blend ratio increasing. The OH* images reveal that the ignition positions of all the cases have small differences, which indicates that using a low PODEn blend ratio of no more than 30% does not need significant adjustment in engine combustion control strategies. It is found that 30% PODEn blended with diesel (P30) can effectively reduce the total soot by approximately 68% in comparison with pure diesel.
Technical Paper

Combustion and Emission Characteristics of WDF in a Light-Duty Diesel Engine over Wide Load Range

2017-10-08
2017-01-2265
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from initial boiling point of gasoline to final boiling point of diesel. Recent experimental results have shown WDF by blending 50% gasoline and 50% diesel (G50) exhibits much lower soot emissions than diesel at medium load with similar thermal efficiency. However, the engine performances fueled by G50 at both low load end and high load end are still unknown. In this study, the combustion and emission characteristics of G50 and diesel are compared over a wide load range from 0.2 MPa IMEP to 1.4 MPa IMEP at a light-duty diesel engine. The results shown that at 0.2 MPa IMEP, G50 exhibits low combustion stability and thermal efficiency. With the increase of load, the poor combustion quality of G50 is improved. G50 can achieve soot-free combustion up to 1.0 MPa IMEP, while diesel cannot.
Technical Paper

Experimental Study of Flame Accelerated Ignition on Rapid Compression Machine and Heavy Duty Engine

2017-10-08
2017-01-2242
A new ignition method named Flame Accelerated Ignition (FAI) is proposed in this paper. The FAI system composes of a spark plug and a flame acceleration tunnel with annular obstacles inside. The FAI was experimentally investigated on a rapid compression machine (RCM) with optical accessibility and a single-cylinder heavy duty research engine. In RCM, the flame is significantly accelerated and the combustion process is evidently enhanced by FAI. The ignition delay and the combustion duration are both sharply decreased compared with conventional spark ignition (CSI) case. According to the optical diagnostics, the flame rushes out of the exit of the flame acceleration tunnel at maximum axial speed over 40 m/s, which exceeds 10 times that of CSI flame propagation. In radial direction, the flame curls outwards near the tunnel exit and keeps growing afterwards.
Technical Paper

Experimental Investigation of Improving Homogeneous Charge Induced Ignition (HCII) Combustion at Medium and High Load by Reducing Compression Ratio

2017-03-28
2017-01-0765
This research focuses on the potential of Homogeneous Charge Induced Ignition (HCII) combustion meeting the Euro V emission standard on a heavy-duty multi-cylinder engine using a simple after-treatment system. However, in our previous studies, it was found that the gasoline ratio was limited in HCII by the over-high compression ratio (CR). In this paper, the effects of reducing CR on the performances of HCII at medium and high loads were explored by experimental methods. It was found that by reducing CR from 18:1 to 16:1 the peak in-cylinder pressure and the peak pressure rise rate were effectively reduced and the gasoline ratio range could be obviously extended. Thus, the combustion and emission characteristics of HCII at medium and high loads were noticeably improved. Soot emissions can be significantly reduced because of the increase of premixed combustion ratio. The reduction could be over 50% especially at high load and high speed conditions.
Technical Paper

Relative Impact of Chemical and Physical Properties of the Oil-Fuel Droplet on Pre-Ignition and Super-Knock in Turbocharged Gasoline Engines

2016-10-17
2016-01-2278
A conceptual approach to help understand and simulate droplet induced pre-ignition is presented. The complex phenomenon of oil-fuel droplet induced pre-ignition has been decomposed to its elementary processes. This approach helps identify the key fluid properties and engine parameters that affect the pre-ignition phenomenon, and could be used to control LSPI. Based on the conceptual model, a 3D CFD engine simulation has been developed which is able to realistically model all of the elementary processes involved in droplet induced pre-ignition. The simulation was successfully able to predict droplet induced pre-ignition at conditions where the phenomenon has been experimentally observed. The simulation has been able to help explain the observation of pre-ignition advancement relative to injection timing as experimentally observed in a previous study [6].
Technical Paper

An Experimental Study Using Spark-Assisted Stratified Compression Ignition (SSCI) Hybrid Combustion Mode for Engine Particle Number (PN) Reduction in a High Compression Ratio Gasoline Engine

2016-04-05
2016-01-0758
Particle Number (PN) have already been a big issue for developing high efficiency internal combustion engines (ICEs). In this study, controlled spark-assisted stratified compression ignition (SSCI) with moderate end-gas auto-ignition was used for reducing PN in a high compression ratio gasoline direct injection (GDI) engine. Under wide open throttle (WOT) and Maximum Brake Torque timing (MBT) condition, high external cooled exhaust gas recirculation (EGR) was filled in the cylinder, while two-stage direct injection was used to form desired stoichiometric but stratified mixture. SSCI combustion mode exhibits two-stage heat release, where the first stage is associated with flame propagation induced by spark ignition and the second stage is the result of moderate end-gas auto-ignition without pressure oscillation at the middle or late stage of the combustion process.
Technical Paper

Role of Wall Effect on Hot-Spot Induced Deflagration to Detonation in Iso-Octane/Air Mixture Under High Temperature and Pressure

2016-04-05
2016-01-0552
A 1-Dimensional (1-D) model of fluid dynamic and chemistry kinetics following hot spot auto-ignition has been developed to simulate the process from auto-ignition to pressure wave propagation. The role of wall effect on the physical-chemical interaction process is numerically studied. A pressure wave is generated after hot spot auto-ignition and gradually damped as it propagates. The reflection of the wall forms a reflected pressure wave with twice the amplitude of the incident wave near the wall. The superposition of the reflected and forward pressure waves reinforces the intensity of the initial pressure wave. Wall effect is determined by the distance between the hot spot center and the cylinder wall. Hot spot auto-ignition near the wall easily initiates detonation under high-temperature and high-pressure conditions because pressure wave reflection couples with chemical reactions and propagates in the mixture with high reactivity.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Journal Article

Highly Turbocharged Gasoline Engine and Rapid Compression Machine Studies of Super-Knock

2016-04-05
2016-01-0686
Super-knock has been a significant obstacle for the development of highly turbocharged (downsized) gasoline engines with spark ignition, due to the catastrophic damage super-knock can cause to the engine. According to previous research by the authors, one combustion process leading to super-knock may be described as hot-spot induced pre-ignition followed by deflagration which can induce detonation from another hot spot followed by high pressure oscillation. The sources of the hot spots which lead to pre-ignition (including oil films, deposits, gas-dynamics, etc.) may occur sporadically, which leads to super-knock occurring randomly at practical engine operating conditions. In this study, a spark plasma was used to induce preignition and the correlation between super-knock combustion and the thermodynamic state of the reactant mixture was investigated in a four-cylinder production gasoline engine.
Technical Paper

CFD Modeling of Mixture Preparation and Soot Formation in a Downsized Gasoline Direct Injection Engine

2016-04-05
2016-01-0586
With increasingly stringent requirements and regulations related to particulate matter(PM) emissions, manufacturers are paying more and more attention to emissions from gasoline direct injection(GDI) engines. The present paper proposes an improved two-step soot model. The model is applied in the Kiva-Chemkin program to simulate the processes of spray impinging, fuel mixture preparation, combustion and soot formation in a typical turbocharged downsized GDI engine. The simulation results show that soot formation in the GDI engine is attributed to non-uniform distribution of the air-fuel mixture and pool fire of wall film in the cylinder. Under homogeneous mode, increasing the injection advance angle can optimize fuel atomization and improve air-fuel mixing, thus reducing soot formation. However, an excessive injection advance angle may cause spray to impinge on the cylinder wall and this will sharply increase the soot emission.
Technical Paper

Investigation into the Effect of Flame Propagation in the Gasoline Compression Ignition by Coupling G-Equation and Reduced Chemical Kinetics Combustion Model

2015-09-01
2015-01-1799
Gasoline Compression Ignition has been widely studied in recent years. The in-cylinder stratified charge in gasoline Partially Premixed Compression Ignition (PPCI) can extend the high load range with lower pressure rise rate than Homogeneous Charge Compression Ignition (HCCI). However, it is still not clear that whether there is flame propagation in the gasoline compression igntion mode and how the flame propagation influences the combustion process and pollution formation. In order to investigate the effect of flame, several gasoline compression ignition cases, including the single-stage and two-stage heat release processes, are simulated with the KIVA-3V Release 2 code in this study. The G-equation is employed to account for flame propagation, and the reduced i-octane/n-heptane mechanism is used to handle the chemical reactions. The results show that the flame propagation exists in the combustion process and it can accelerate the heat release slightly.
Technical Paper

Investigations into Multiple Premixed Compression Ignition Mode Fuelled with Different Mixtures of Gasoline and Diesel

2015-04-14
2015-01-0833
A study of Multiple Premixed Compression Ignition (MPCI) with mixtures of gasoline and diesel is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the same fuel mass per cycle. By keeping the same intake pressure and EGR ratio, the influence of different blending ratios in gasoline and diesel mixtures (90vol%, 80vol% and 70vol% gasoline) is investigated. Combustion and emission characteristics are compared by sweeping the first (−95 ∼ −35deg ATDC) and the second injection timing (−1 ∼ 9deg ATDC) with an injection split ratio of 80/20 and an injection pressure of 80MPa. The results show that compared with diesel combustion, the gasoline and diesel mixtures can reduce NOx and soot emissions simultaneously while maintaining or achieving even higher indicated thermal efficiency, but the HC and CO emissions are high for the mixtures.
X