Refine Your Search

Topic

Search Results

Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

Expansion of external EGR effective region and influence of dilution on boosted operation of a downsized turbocharged GDI engine

2019-12-19
2019-01-2252
Engine downsizing is an effective technology to lower automotive CO2 emissions. However, the high load low speed regions are plagued with knocking combustion that are usually overcome by retarding the ignition. This interferes with the efficiency gains due to very late combustion. This paper reports the use of Exhaust Gas Recirculation (EGR) on a Ford Ecoboost 1l downsized gasoline turbocharged direct injection (GTDI) engine to improve efficiency by optimising combustion phasing unlocked by the improved knock resistance with EGR dilution. Further ignition system upgrades are tested for impact towards further efficiency improvements. 75mJ (standard) and 120mJ (high energy) ignition systems were compared. The experimental results showed that the brake specific fuel consumption (BSFC) can be improved by 5.6% with EGR dilution at 25%. When considering combined effects of EGR and high energy ignition upon engine fuel economy, the BSFC gain improves to 7.9%.
Technical Paper

Experimental Studies of Gasoline Auxiliary Fueled Turbulent Jet Igniter at Different Speeds in Single Cylinder Engine

2019-09-09
2019-24-0105
Turbulent Jet Ignition (TJI) is a pre-chamber ignition system for an otherwise standard gasoline spark ignition engine. TJI works by injecting chemically active turbulent jets to initiate combustion in a premixed fuel/air mixture. The main advantage of TJI is its ability to ignite and burn, completely, very lean fuel/air mixtures in the main chamber charge. This occurs with a very fast burn rate due to the widely distributed ignition sites that consume the main charge rapidly. Rapid combustion of lean mixtures leads to lower exhaust emissions due to more complete combustion at a lower temperature. For this research, the effectiveness of the Mahle TJI system on combustion stability, lean limit and emissions in a single cylinder spark engine fueled with gasoline at different speeds was investigated. The combustion and heat release process was analyzed and the exhaust emissions were measured.
Technical Paper

Study of Exhaust Re-Breathing Application on a DI SI Engine at Partial Load Operation

2018-09-03
2018-36-0129
Using Exhaust Gas Recycling (EGR) on internal combustion engines enables the reduction of emissions with a low or even no cost to the engine efficiency at part-load operation. The charge dilution with EGR can even increase the engine efficiency due to de-throttling and reduction of part load pumping losses. This experimental study proposed the use of late exhaust valve closure (LEVC) to achieve internal EGR (increased residual gas trapping). A naturally aspirated single cylinder direct injection spark ignition engine equipped with four electro-hydraulic actuated valves that enabled full valve timing and lift variation. Eight levels of positive valve overlap (PVO) with LEVC were used at the constant load of 6.0 bar IMEP and the speed of 1500 rpm. The results have shown that later exhaust valve closure (EVC) required greater intake pressures to maintain the engine load due to the higher burned gases content. Hence, lower pumping losses and thus higher indicated efficiency were obtained.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Exploring the NOx Reduction Potential of Miller Cycle and EGR on a HD Diesel Engine Operating at Full Load

2018-04-03
2018-01-0243
The reduction in nitrogen oxides (NOx) emissions from heavy-duty diesel engines requires the development of more advanced combustion and control technologies to minimize the total cost of ownership (TCO), which includes both the diesel fuel consumption and the aqueous urea solution used in the selective catalytic reduction (SCR) aftertreatment system. This drives an increased need for highly efficient and clean internal combustion engines. One promising combustion strategy that can curb NOx emissions with a low fuel consumption penalty is to simultaneously reduce the in-cylinder gas temperature and pressure. This can be achieved with Miller cycle and by lowering the in-cylinder oxygen concentration via exhaust gas recirculation (EGR). The combination of Miller cycle and EGR can enable a low TCO by minimizing both the diesel fuel and urea consumptions.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Experimental Investigation on DME Assisted Gasoline CAI/HCCI Combustion with Intake Re-Breathing Valve Strategy

2015-09-01
2015-01-1818
In order to investigate feasibility of DME (Di-methyl ether) assisted gasoline CAI (controlled-auto ignition) combustion, direct DME injection is employed to act as the ignition source to trigger the auto-ignition combustion of premixed gasoline/air mixture with high temperature exhaust gas. Intake re-breathing valve strategy is adopted to obtain internal exhaust recirculation (EGR) that regulates heat release rate and ignitability of the premixed gasoline and air mixture. The effects of intake re-breathing valve timing and 2nd DME injection timing of different split injection ratios were investigated and discussed in terms of combustion characteristics, emission and efficiencies. The analyses showed that re-breathing intake valve timing had a large effect on the operation range of CAI combustion due to EGR and intake temperature variation.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Effect of Flame Propagation on the Auto-Ignition Timing in SI-CAI Hybrid Combustion (SCHC)

2014-10-13
2014-01-2672
SCHC (SI-CAI hybrid combustion), also known as spark-assisted HCCI, has been proved to be an effective method to stabilize combustion and extend the operation range of high efficiency, low temperature combustion. The combustion is initiated by the spark discharge followed by a propagation of flame front until the auto-ignition of end-gas. Spark ignition and the spark timing can be used to control the combustion event. The goal of this research is to study the effect of flame propagation on the auto-ignition timing in SCHC by means of chemiluminescence imaging and heat release analysis based on an optical engine. With higher EGR (exhaust gas recirculation) rate, more fuel is consumed by the flame propagation and stronger correlation between the flame propagation and auto-ignition is observed.
Technical Paper

Lubricant Induced Pre-Ignition in an Optical SI Engine

2014-04-01
2014-01-1222
This work was concerned with study of lubricant introduced directly into the combustion chamber and its effect on pre-ignition and combustion in an optically accessed single-cylinder spark ignition engine. The research engine had been designed to incorporate full bore overhead optical access capable of withstanding peak in-cylinder pressures of up to 150bar. An experiment was designed where a fully formulated synthetic lubricant was deliberately introduced through a specially modified direct fuel injector to target the exhaust area of the bore. Optical imaging was performed via natural light emission, with the events recorded at 6000 frames per second. Two port injected fuels were evaluated including a baseline commercial grade gasoline and low octane gasoline/n-heptane blend. The images revealed the location of deflagration sites consistently initiating from the lubricant itself.
Technical Paper

Diesel Engine Combustion Optimization for Bio-Diesel Blends Using Taguchi and ANOVA Statistical Methods

2013-09-08
2013-24-0011
Diesel engine emissions are directly influenced by the air fuel mixture within the cylinder chamber. Increasing concern over the environment impacts of the exhaust pollutants has enforced the setting of emissions legislation since the 1960s. In the last decades emissions legislations have become stricter which resulted to the introduction of multiple injection strategies and exhaust gas recirculation (EGR) in the cylinder in order to abate emissions produced. In this study, the effect of injection rate for double in-cylinder injection in combination with various EGR and bio-diesel fuel rates has been studied using CFD simulations. Taguchi orthogonal arrays have been used for reducing the number of simulations for possible combinations of different rates of injection quantities, EGR composition and bio-diesel quantities. Oneway analysis of variance technique (ANOVA) has been used to estimate the importance of the above factors to the emissions output and performance of the engine.
Technical Paper

Direct In-cylinder CO2 Measurements of Residual Gas in a GDI Engine for Model Validation and HCCI Combustion Development

2013-04-08
2013-01-1654
An accurate prediction of residual burned gas within the combustion chamber is important to quantify for development of modern engines, especially so for those with internally recycled burned gases and HCCI operations. A wall-guided GDI engine has been fitted with an in-cylinder sampling probe attached to a fast response NDIR analyser to measure in-situ the cycle-by-cycle trapped residual gas. The results have been compared with a model which predicts the trapped residual gas fraction based on heat release rate calculated from the cylinder pressure data and other factors. The inlet and exhaust valve timings were varied to produce a range of Residual Gas Fraction (RGF) conditions and the results were compared between the actual measured CO2 values and those predicted by the model, which shows that the RGF value derived from the exhaust gas temperature and pressure measurement at EVC is consistently overestimated by 5% over those based on the CO2 concentrations.
Technical Paper

A Computational Investigation into the Effects of Included Spray Angle on Heavy-Duty Diesel Engine Operating Parameters

2012-09-10
2012-01-1714
Effects of included spray angle with different injection strategies on combustion characteristics, performance and amount of pollutant emission have been computationally investigated in a common rail heavy-duty DI diesel engine. The CFD model was firstly validated with experimental data achieved from a Caterpillar 3401 diesel engine for a conventional part load condition at 1600 rev/min. Three different included spray angles (α = 145°, 105°, 90°) were studied in comparison with the traditional spray injection angle (α = 125°). The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that 105° spray cone angle along with an optimized split pre- and post-Top Dead Center (TDC) injection strategy could significantly reduce NOx and soot emissions without much penalty of the fuel consumption, as compared to the wide spray angle.
Book

Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines

2012-07-30
The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements.
Technical Paper

Experimental Study on Spark Assisted Compression Ignition (SACI) Combustion with Positive Valve Overlap in a HCCI Gasoline Engine

2012-04-16
2012-01-1126
The spark-assisted compression ignition (SACI) is widely used to expend the high load limit of homogeneous charge compression ignition (HCCI), as it can reduce the high heat release rate effectively while partially maintain the advantage of high thermal efficiency and low NOx emission. But as engine load increases, the SACI combustion traditionally using negative valve overlap strategy (NVO) faces the drawback of higher pumping loss and limited intake charge availability, which lead to a restricted load expansion and a finite improvement of fuel economy. In this paper, research is focused on the SACI combustion using positive valve overlap (PVO) strategy. The characteristics of SACI combustion employing PVO strategy with external exhaust gas recirculation (eEGR) are investigated. Two types of PVO strategies are analyzed and compared to explore their advantages and defects, and the rules of adjusting SACI combustion with positive valve overlap are concluded.
Technical Paper

Investigation of Pilot and Multiple Injection Parameters on Mixture Formation and Combustion Characteristics in a Heavy Duty DI-Diesel Engine

2012-04-16
2012-01-0142
The mechanism of NOx and soot reduction using different pilot and multiple injection strategies has been computationally studied in a heavy duty DI Diesel engine. A designed set of advanced injection schemes with various variables and exhaust gas recirculation rate (up to 10%) have been analyzed. The CFD model was firstly calibrated against experimental data for a part load operation at 1600 rpm. The computational models used were found to predict the correct trends obtained in the experiment. The study demonstrated the potential and explained the mechanism of the combination of EGR and multiple injection to reduce both soot and NOx emissions together with improved fuel economy.
Technical Paper

Analysis of the Effect of Re-Entrant Combustion Chamber Geometry on Combustion Process and Emission Formation in a HSDI Diesel Engine

2012-04-16
2012-01-0144
An investigation has been carried out to examine the influence of re-entrant combustion chamber geometry on mixture preparation, combustion process and engine performance in a high-speed direct injection (HSDI) four valves 2.0L Ford diesel engine by CFD modeling. The computed cylinder pressure, heat release rate and soot and NOx emissions were firstly compared with experimental data and good agreement between the predicted and experimental values was ensured the accuracy of the numerical predictions collected with the present work. Three ITs (Injection Timing) at 2.65° BTDC, 0.65° BTDC and 1.35° ATDC, all with 30 crank angle pilot separations were also considered to identify the optimum IT for achieving the minimum amount of pollutant emissions.
Technical Paper

CFD Evaluation of Effects of Split Injection on Combustion and Emissions in a DI Diesel Engine

2011-04-12
2011-01-0822
Effects of split injection with different EGR rate on combustion process and pollutant emissions in a DI diesel engine have been evaluated with CFD modeling. The model was validated with experimental data achieved from a Caterpillar 3401 DI diesel engine and 3D CFD simulation was carried out from intake valve closing (IVC) to exhaust valve opening (EVO). Totally 12 different injection strategies for which two injection pulses with different fuel amount for each pulse (up to 30% for the second pulse) and different separation between two pulses (up to 30° CA) were evaluated. Results show that adequate injection separation and enough fuel amount of the second pulse could form a separate 2nd stage of heat release which could reduce the peak combustion temperature and improve the oxidation of soot formed in the first heat release stage.
X