Refine Your Search

Topic

Search Results

Technical Paper

Impact of Thermal Barrier Coatings on Intake and Exhaust Valves in a Spark Ignition Engine

2023-04-11
2023-01-0243
Spark ignition knock is highly sensitive to changes in intake air temperature. Hot surface temperatures due to ceramic thermal barrier coatings increase knock propensity by elevating the incoming air temperature, thus mitigating the positive impacts of low heat transfer losses by requiring spark retard to avoid knock. Low thermal inertia coatings (i.e. Temperature swing coatings) have been proposed as a means of reducing or eliminating the open cycle charge heating penalty of traditional TBCs through a combination of low thermal conductivity and low volumetric heat capacity materials. However, in order to achieve a meaningful gain in efficiency, a significant fraction of the combustion chamber must be coated. In this study, a coated piston and intake and exhaust valves with coated combustion faces, backsides, and stems are installed in a single-cylinder research engine to evaluate the effect of high coated fractions of the combustion chamber in a knock-sensitive architecture.
Technical Paper

Assessing the Impact of a Novel TBC Material on Heat Transfer in a Spark Ignition Engine through 3D CFD-FEA Co-Simulation Routine

2022-03-29
2022-01-0402
Thermal barrier coatings (TBCs) have been of interest since the 1970s for application in internal combustion (IC) engines. Thin TBCs exhibit a temperature swing phenomenon wherein wall temperatures dynamically respond to the transient working-gas temperature throughout the engine cycle, thus reducing the temperature difference driving the heat transfer. Determining these varying wall temperatures is necessary to evaluate and study the effect of coatings on wall heat transfer. This study focuses on developing a 3D computational fluid dynamics (CFD)-finite element analysis (FEA) coupled simulation, or co-simulation, routine to determine the wall temperatures of a piston coated with a thin TBC layer subject to spark ignition combustion heat flux. A CONVERGE 3D-CFD model was used to simulate the combustion process in a single-cylinder, light-duty experimental spark ignition (SI) engine.
Journal Article

Model-Based Estimation of Vehicle Aerodynamic Drag and Rolling Resistance

2015-09-29
2015-01-2776
Commercial vehicles transport the majority of the inland freight in US and a significant number of passengers. They are large fuel consumers as they operate a large number of hours per day, pulling heavy loads. The increasing fuel price and the Green House Gas emission regulation have provided a strong impetus for new technologies capable of improving the commercial vehicle fuel economy. Among others, optimized powertrain control can improve the vehicle fuel economy, particularly if it is based on accurate information about the instantaneous load demand. Furthermore, model-based online vehicle parameter estimator is critical for implementation of an adaptive vehicle controller. While vehicle mass estimation has been successfully demonstrated, rolling resistance and aerodynamic drag estimation has not been fully explored yet. This paper examines this problem using model-based approach with a supervisory data extraction scheme.
Journal Article

Development of a Phenomenological Dual-Fuel Natural Gas Diesel Engine Simulation and Its Use for Analysis of Transient Operations

2014-10-13
2014-01-2546
Abundant supply of Natural Gas (NG) is U.S. and cost-advantage compared to diesel provides impetus for engineers to use alternative gaseous fuels in existing engines. Dual-fuel natural gas engines preserve diesel thermal efficiencies and reduce fuel cost without imposing consumer range anxiety. Increased complexity poses several challenges, including the transient response of an engine with direct injection of diesel fuel and injection of Compressed Natural Gas (CNG) upstream of the intake manifold. A 1-D simulation of a Cummins ISX heavy duty, dual-fuel, natural gas-diesel engine is developed in the GT-Power environment to study and improve transient response. The simulated Variable Geometry Turbine (VGT)behavior, intake and exhaust geometry, valve timings and injector models are validated through experimental results. A triple Wiebe combustion model is applied to characterize experimental combustion results for both diesel and dual-fuel operation.
Technical Paper

An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines

2014-10-13
2014-01-2695
The recent advent of highly effective drilling and extraction technologies has decreased the price of natural gas and renewed interest in its use for transportation. Of particular interest is the conversion of dedicated diesel engines to operate on dual-fuel with natural gas injected into the intake manifold. Dual-fuel systems with natural gas injected into the intake manifold replace a significant portion of diesel fuel energy with natural gas (generally 50% or more by energy content), and produce lower operating costs than diesel-only operation. Diesel-natural gas engines have a high compression ratio and a homogeneous mixture of natural gas and air in the cylinder end gases. These conditions are very favorable for knock at high loads. In the present study, knock prediction concepts that utilize a single step Arrhenius function for diesel-natural gas dual-fuel engines are evaluated.
Journal Article

Impact of Model-Based Lithium-Ion Battery Control Strategy on Battery Sizing and Fuel Economy in Heavy-Duty HEVs

2011-09-13
2011-01-2253
Electrification and hybridization show great potential for improving fuel economy and reducing emission in heavy-duty vehicles. However, high battery cost is unavoidable due to the requirement for large batteries capable of providing high electric power for propulsion. The battery size and cost can be reduced with advanced battery control strategies ensuring safe and robust operation covering infrequent extreme conditions. In this paper, the impact of such a battery control strategy on battery sizing and fuel economy is investigated under various military and heavy-duty driving cycles. The control strategy uses estimated Li-ion concentration information in the electrodes to prevent battery over-charging and over-discharging under aggressive driving conditions. Excessive battery operation is moderated by adjusting allowable battery power limits through the feedback of electrode-averaged Li-ion concentration estimated by an extended Kalman filter (EKF).
Journal Article

Evaluation of Diesel Oxidation Catalyst Conversion of Hydrocarbons and Particulate Matter from Premixed Low Temperature Combustion of Biodiesel

2011-04-12
2011-01-1186
Premixed low temperature combustion (LTC) in diesel engines simultaneously reduces soot and NOx at the expense of increased hydrocarbon (HC) and CO emissions. The use of biodiesel in the LTC regime has been shown to produce lower HC emissions than petroleum diesel; however, unburned methyl esters from biodiesel are more susceptible to particulate matter (PM) formation following atmospheric dilution due to their low volatility. In this study, the efficacy of a production-type diesel oxidation catalyst (DOC) for the conversion of light hydrocarbons species and heavier, semi-volatile species like those in unburned fuel is examined. Experimental data were taken from a high speed direct-injection diesel engine operating in a mid-load, late injection partially premixed LTC mode on ultra-low sulfur diesel (ULSD) and neat soy-based biodiesel (B100). Gaseous emissions were recorded using a conventional suite of analyzers and individual light HCs were measured using an FT-IR analyzer.
Journal Article

Hybrid Electric Vehicle Powertrain and Control Strategy Optimization to Maximize the Synergy with a Gasoline HCCI Engine

2011-04-12
2011-01-0888
This simulation study explores the potential synergy between the HCCI engine system and three hybrid electric vehicle (HEV) configurations, and proposes the supervisory control strategy that maximizes the benefits of combining these two technologies. HCCI operation significantly improves fuel efficiency at part load, while hybridization aims to reduce low load/low speed operation. Therefore, a key question arises: are the effects of these two technologies additive or overlapping? The HEV configurations include two parallel hybrids with varying degrees of electrification, e.g. with a 5kW integrated starter/motor (“Mild”) and with a 10 kW electric machine (“Medium”), and a power-split hybrid. The engine is a dual-mode, SI-HCCI system and the engine map reflects the impact of HCCI on brake specific fuel consumption.
Technical Paper

Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition

2011-04-12
2011-01-1179
Homogeneous charge compression ignition (HCCI) has received much attention in recent years due to its ability to reduce both fuel consumption and NO emissions compared to normal spark-ignited (SI) combustion. However, due to the limited operating range of HCCI, production feasible engines will need to employ a combination of combustion strategies, such as stoichiometric SI combustion at high loads and leaner burn spark-assisted compression ignition (SACI) and HCCI at intermediate and low loads. The goal of this study was to extend the high load limit of HCCI into the SACI region while maintaining a stoichiometric equivalence ratio. Experiments were conducted on a single-cylinder research engine with fully flexible valve actuation. In-cylinder pressure rise rates and combustion stability were controlled using cooled external EGR, spark assist, and negative valve overlap. Several engine loads within the SACI regime were investigated.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Journal Article

Premixed Low Temperature Combustion of Biodiesel and Blends in a High Speed Compression Ignition Engine

2009-04-20
2009-01-0133
The effects of combining premixed, low temperature combustion (LTC) with biodiesel are relatively unknown to this point. This mode allows simultaneously low soot and NOx emissions by using high rates of EGR and increasing ignition delay. This paper compares engine performance and emissions of neat, soy-based methyl ester biodiesel (B100), B20, B50, pure ultra low sulfur diesel (ULSD) and a Swedish, low aromatic diesel in a multi-cylinder diesel engine operating in a late-injection premixed LTC mode. Using heat release analysis, the progression of LTC combustion was explored by comparing fuel mass fraction burned. B100 had a comparatively long ignition delay compared with Swedish diesel when measured by start of ignition (SOI) to 10% fuel mass fraction burned (CA10). Differences were not as apparent when measured by SOI to start of combustion (SOC) even though their cetane numbers are comparable.
Technical Paper

Development of an In-Cylinder Heat Transfer Model with Compressibility Effects on Turbulent Prandtl Number, Eddy Viscosity Ratio and Kinematic Viscosity Variation

2009-04-20
2009-01-0702
In-cylinder heat transfer has strong effects on engine performance and emissions and heat transfer modeling is closely related to the physics of the thermal boundary layer, especially the effects of conductivity and Prandtl number inside the thermal boundary layer. Compressibility effects on the thermal boundary layer are important issues in multi-dimensional in-cylinder heat transfer modeling. Nevertheless, the compressibility effects on kinematic viscosity and the variation of turbulent Prandtl number and eddy viscosity ratio have not been thoroughly investigated. In this study, an in-cylinder heat transfer model is developed by introducing compressibility effects on turbulent Prandtl number, eddy viscosity ratio and kinematic viscosity variation with a power-law approximation. This new heat transfer model is implemented to a spark-ignition engine with a coherent flamelet turbulent combustion model and the RNG k- turbulence model.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

An Investigation in Measuring Crank Angle Resolved In-Cylinder Engine Friction Using Instantaneous IMEP Method

2007-10-29
2007-01-3989
This paper describes the measurement of in-cylinder engine friction using the instantaneous IMEP method. This method has been applied to measure in-cylinder friction force in a modern, low friction design production spark ignited engine. An improved mechanical telemetry system has been developed to implement this method. The telemetry system continues to provide excellent data even after 50+ hours of operation at speeds as high as 2000 rpm. Investigated in this study were the primary sources of error associated with this technique. Also presented are the steps taken to minimize the effects of these errors. The refined technique has been subsequently used to obtain piston assembly friction data for both motoring and a limited number of firing cases. The effects of design parameters and operating conditions were investigated.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Characterizing Light-Off Behavior and Species-Resolved Conversion Efficiencies During In-Situ Diesel Oxidation Catalyst Degreening

2006-04-03
2006-01-0209
Degreening is crucial in obtaining a stable catalyst prior to assessing its performance characteristics. This paper characterizes the light-off behavior and conversion efficiency of a Diesel Oxidation Catalyst (DOC) during the degreening process. A platinum DOC is degreened for 16 hours in the presence of actual diesel engine exhaust at 650°C and 10% water (H2O) concentration. The DOC's activity for carbon monoxide (CO) and for total hydrocarbons (THC) conversion is checked at 0, 1, 2, 3, 4, 6, 8, 10, 12, and 16 hours of degreening. Pre-and post-catalyst hydrocarbon species are analyzed via gas chromatography at 0, 4, 8, and 16 hours of degreening. It is found that both light-off temperature and species-resolved conversion efficiencies change rapidly during the first 8 hours of degreening and then stabilize to a large degree. T50, the temperature where the catalyst is 50% active towards a particular species, increases by 14°C for CO and by 11°C for THC through the degreening process.
Technical Paper

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

2006-04-03
2006-01-0201
Premixed compression ignition low-temperature diesel combustion (PCI) can simultaneously reduce particulate matter (PM) and oxides of nitrogen (NOx). Carbon monoxide (CO) and total hydrocarbon (THC) emissions increase relative to conventional diesel combustion, however, which may necessitate the use of a diesel oxidation catalyst (DOC). For a better understanding of conventional and PCI combustion, and the operation of a platinum-based production DOC, engine-out and DOC-out exhaust hydrocarbons are speciated using gas chromatography. As combustion mode is changed from lean conventional to lean PCI to rich PCI, engine-out CO and THC emissions increase significantly. The relative contributions of individual species also change; increasing methane/THC, acetylene/THC and CO/THC ratios indicate a richer combustion zone and a reduction in engine-out hydrocarbon incremental reactivity.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Simulation of an Integrated Starter Alternator (ISA) System for the HMMWV

2006-04-03
2006-01-0442
The development and use of a simulation of an Integrated Starter Alternator (ISA) for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV) is presented here. While the primary purpose of an ISA is to provide electric power for additional accessories, it can also be utilized for mild hybridization of the powertrain. In order to explore ISA's potential for improving HMMWV's fuel economy, an ISA model capable of both producing and absorbing mechanical power has been developed in Simulink. Based on the driver's power request and the State of Charge of the battery (SOC), the power management algorithm determines whether the ISA should contribute power to, or absorb power from the crankshaft. The system is also capable of capturing some of the braking energy and using it to charge the battery. The ISA model and the power management algorithm have been integrated in the Vehicle-Engine SIMulation (VESIM), a SIMULINK-based vehicle model previously developed at the University of Michigan.
Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

2005-05-11
2005-01-2092
One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
X