Refine Your Search

Topic

Search Results

Book

Generalized Vehicle Dynamics

2022-04-26
Author Daniel E. Williams, an industry professional with more than 30 years of experience in chassis control systems from concept to launch, brings this experience and his unique approach to readers of Generalized Vehicle Dynamics. This book makes use of nomenclature and conventions not used in other texts. This combination allows the derivation of complex vehicles that roll with multiple axles, any of which can be steered, to be directly predicted by manipulation of a generalized model. Similarly the ride characteristics of such a generalized vehicle are derived. This means the vehicle dynamic behavior of these vehicles can be directly written from the results derived in this work, and there is no need to start from Newton's Second Law to create such insight. Using new and non-standard conventions allows wider applicability to complex vehicles, including autonomous vehicles. Generalized Vehicle Dynamics is divided into two main sections-ride and handling-with roll considered in both.
Book

Fundamentals of Vehicle Dynamics, Revised Edition

2021-04-29
A world-recognized expert in the science of vehicle dynamics, Dr. Thomas Gillespie has created an ideal reference book that has been used by engineers for 30 years, ranging from an introduction to the subject at the university level to a common sight on the desks of engineers throughout the world. As with the original printing, Fundamentals of Vehicle Dynamics, Revised Edition, strives to find a middle ground by balancing the need to provide detailed conceptual explanations of the engineering principles involved in the dynamics of ground vehicles with equations and example problems that clearly and concisely demonstrate how to apply such principles. A study of this book will ensure that the reader comes away with a solid foundation and is prepared to discuss the subject in detail.
Book

Honda R&D Technical Review October 2020

2020-12-28
Honda R&D Technical Review is a periodical containing research papers related to Honda R&D Center activities worldwide that cover automobile, motorcycle, power products, aircraft engine, and other fundamental technologies. Honda Motor offers a book for the October 2020 issue with 161 pages containing 17 papers focusing on the following latest topics: Development of High-efficiency CVT for 2020 Model Year CITY Modeling and Utilizing Expert's Knowledge, Experience, and Thinking in Automobile Development Material Database for Efficient Development Using Materials Informatics Traversability Analysis for Mobile Robot Navigation in Rough Terrain
Book

Honda R&D Technical Review October 2019

2019-10-01
Honda R&D Technical Review is a periodical containing research papers related to Honda R&D Center activities worldwide that cover automobile, motorcycle, power products, aircraft engine, and other fundamental technologies. Honda Motor offers a book for October 2019 issue with 103 pages containing 11 papers focusing on the following latest topics: Application of Modular Design Technology to Consumer-use General Purpose Engine Prediction Technology for Thermal Mechanical Fatigue Strength of Cylinder Head Technology to Boost CVT Fuel Efficiency through Series Connection of Mechanical and Electric Oil Pumps
Book

Liquid Rocket Engine: Thrust Chamber Parametric Modeling

2018-11-15
The great engineering achievement required to overcome most of the challenges and obstacles that prevented turning rocket design from art into science took place in Europe and the United States between the 1930s and the 1950s. With the vast majority of the engines currently in operation developed in the “pre-computer” age, there are new opportunities to update the design methodologies using technology that can now handle highly complex calculations fast. The space sector with an intense focus on efficiency is driving the need for updating, adapting or replacing the old modeling practices with new tools capable of reducing the volume of resources and the time required to complete simulations and analysis. This book presents an innovative parametric model applicable to the project of some elements of the liquid rocket thrust chamber with the level of detail and accuracy appropriate to the preliminary design phase.
Book

Honda R&D Technical Review October 2017

2017-10-01
Honda's October 2017 R&D Technical Review features cutting-edge developments and new ways of solving engineering problems. Research papers related to Honda R&D Center activities worldwide cover the work of engineering teams in automobile, motocycle, power products, aircraft engine, and other fundamental technologies. This edition brings 18 technical papers and provides featured topics that include: • Development of New 3.5 L V6 Turbocharged Gasoline Engine for New NXS • Design of Safety Factor for Slip or half-toroidal Variator by Dynamic Behavior Analysis • Technologies for Low Iron-loss in New SPORT HYBRID i-DCD Motor
Book

9th AVL International Commercial Powertrain Conference (2017)

2017-05-21
Organized in cooperation with SAE International, AVL’s International Commercial Powertrain Conference- ICPC, happens every two years. It is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. This event offers a unique opportunity for engineers to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. In 2017, the 9th ICPC focused on alternative powertrain technologies and innovations improving operating efficiency. These proceedings focus on: • Future challenges for engines and emissions • Smart Technologies Changing Farming • Cyber Physical Systems in Agriculture Business • OEM View of the Future of the Construction Machinery Industry • Powertrain Developments • CO2 Reduction • CVT Transmission Platform Technology • Autonomous and Connected Trucks
Book

Automotive 48-volt Technology

2016-04-15
The introduction of 48-volt technology enables traditionally parasitic applications that run off the engine to be replaced with electrically driven systems, resulting in improvements in performance and efficiency. In the first of a series of reports produced jointly by ABOUT Automotive and SAE International, this comprehensive Executive Report analyses major engineering challenges facing the industry, and the solution strategies key players are beginning to adopt.
Book

The Multi Material Lightweight Vehicle (MMLV) Project

2015-06-05
The desire for greater fuel efficiency and reduced emissions have accelerated a shift from traditional materials to design solutions that more closely match materials and their properties with key applications. The Multi-Material Lightweight Vehicle (MMLV) Project presents cutting edge engineering that meets future challenges in a concept vehicle with weight and life-cycle assessment savings. These results significantly contribute to achieving fuel reduction and to meeting future Corporate Average Fuel Economy (CAFÉ) regulations without compromising vehicle performance or occupant safety.
Book

Honda R& D Technical Review April 2015

2015-04-01
Honda's April 2015 R&D Technical Review features cutting-edge developments and new ways of solving engineering problems from Honda's worldwide R&D teams. This edition brings 17 technical papers covering: • New motorcycle design and styling • Styling design of new crossover VEZEL • Development of inverter generator w/ fuel injector engine • Development of UNI-CUB • Synthesis of facet-controlled PtNi nanoparticles and evaluation of performance in PEM fuel cell • Prediction method for vibration transmission of hydraulic engine mount • Study of human dynamic analysis relating to handling and stability fo driving
Book

Energy Harvesting/Regeneration for Electric Vehicles Land, Water & Air 2015-2025

2014-12-01
The electric vehicle industry - land, water and air - is rapidly rising to become a market of over $533 billion by 2025. Some run entirely on harvested energy as with solar lake boats. Others recycle energy as with regenerative braking of cars, buses and military vehicles harvesting kinetic energy. Others use different forms of harvesting either to charge the traction batteries, or to drive autonomous device. In some cases, harvesting is making completely new forms of electric vehicle possible such as "glider" Autonomous Underwater Vehicles (AUVs) that can stay at sea for years, gaining electricity from both wave power and sunshine. Multiple forms of energy harvesting on one vehicle are becoming more common from cars to superyachts.
Book

Honda R&D Technical Review: April 2014

2014-04-01
Honda's April 2014 R&D Technical Review features cutting-edge developments from Honda's worldwide R&D teams. This edition brings 23 original papers on the introduction of new technologies covering motorcycle, power products, aircraft engine, among others. They cover advancements in the following areas: • Development of 7-speed dual clutch transmission SPORT HYBRID i-DCD • Research on engine control to make effective use of bioethanol-blend fuels • Optimization of driving force distribution control in all-wheel drive based on wheel rotation speed difference between front and rear • Robust optimization for windmill airfoil design under variable wind conditions
Book

Analysis Techniques for Racecar Data Acquisition, Second Edition

2014-02-24
Racecar data acquisition used to be limited to well-funded teams in high-profile championships. Today, the cost of electronics has decreased dramatically, making them available to everyone. But the cost of any data acquisition system is a waste of money if the recorded data is not interpreted correctly. This book, updated from the best-selling 2008 edition, contains techniques for analyzing data recorded by any vehicle's data acquisition system. It details how to measure the performance of the vehicle and driver, what can be learned from it, and how this information can be used to advantage next time the vehicle hits the track. Such information is invaluable to racing engineers and managers, race teams, and racing data analysts in all motorsports. Whether measuring the performance of a Formula One racecar or that of a road-legal street car on the local drag strip, the dynamics of vehicles and their drivers remain the same. Identical analysis techniques apply.
Book

Heavy-Duty Wheeled Vehicles: Design, Theory, Calculations

2014-01-27
Heavy-duty wheeled vehicles (HDWVs) are all-wheel-drive vehicles that carry 25 tons or more and have three or more axles. They transport heavy, bulky cargo such as raw minerals, timber, construction materials, pre-fabricated modules, weapons, combat vehicles, and more. HDWVs are used in a variety of industries (mining, logging, construction, energy) and are critical to a country’s economy and defense. These vehicles have unique development requirements due to their high loads, huge dimensions, and specific operating conditions. Hauling efficiencies can be improved by increasing vehicle load capacity; however capacities are influenced by legislation, road limits, and design. Designing HDWVs differs from other multi-purpose all-wheel-drive vehicles. The chassis must be custom-designed to suit the customer’s particular purpose. The number of axles is another variable, as well as which ones are driving and which are driven. Tires are also customizable.
Book

Solving Engineering Problems in Dynamics

2014-01-01
Solving Engineering Problems in Dynamics helps practicing engineers successfully analyze real mechanical systems by presenting comprehensive methods for analyzing the motion of engineering systems and their components. This analysis covers three basic phases: 1) composing the differential equation of motion; 2) solving the differential equation of motion; and 3) analyzing the solution. Although a formal engineering education provides the fundamental skills for completing these phases, many engineers nonetheless would benefit by gaining further insight in using these fundamentals to solve real-life engineering problems. This book thus describes in step-by-step order the methods related to each of these phases.
Book

Autonomous Vehicles for Safer Driving

2013-04-16
Self-driving cars are no longer in the realm of science fiction, thanks to the integration of numerous automotive technologies that have matured over many years. Technologies such as adaptive cruise control, forward collision warning, lane departure warning, and V2V/V2I communications are being merged into one complex system. The papers in this compendium were carefully selected to bring the reader up to date on successful demonstrations of autonomous vehicles, ongoing projects, and what the future may hold for this technology. It is divided into three sections: overview, major design and test collaborations, and a sampling of autonomous vehicle research projects. The comprehensive overview paper covers the current state of autonomous vehicle research and development as well as obstacles to overcome and a possible roadmap for major new technology developments and collaborative relationships.
Book

Kinetic Energy Recovery Systems for Racing Cars

2013-04-02
A kinetic energy recover system (KERS) captures the kinetic energy that results when brakes are applied to a moving vehicle. The recovered energy can be stored in a flywheel or battery and used later, to help boost acceleration. KERS helps transfer what was formerly wasted energy into useful energy. In 2009, the Federation Internationale de l’Automobile (FIA) began allowing KERS to be used in Formula One (F1) competition. Still considered experimental, this technology is undergoing development in the racing world but has yet to become mainstream for production vehicles. The Introduction of this book details the theory behind the KERS concept. It describes how kinetic energy can be recovered, and the mechanical and electric systems for storing it. Flybrid systems are highlighted since they are the most popular KERS developed thus far. The KERS of two racing vehicles are profiled: the Dyson Lola LMP1 and Audi R18 e-tron Quattro.
Book

Dynamic Analysis and Control System Design of Automatic Transmissions

2013-02-12
While the basic working principle and the mechanical construction of automatic transmissions has not changed significantly, increased requirements for performance, fuel economy, and drivability, as well as the increasing number of gears has made it more challenging to design the systems that control modern automatic transmissions. New types of transmissions—continuously variable transmissions (CVT), dual clutch transmissions (DCT), and hybrid powertrains—have presented added challenges. Gear shifting in today’s automatic transmissions is a dynamic process that involves synchronized torque transfer from one clutch to another, smooth engine speed change, engine torque management, and minimization of output torque disturbance. Dynamic analysis helps to understand gear shifting mechanics and supports creation of the best design for gear shift control systems in passenger cars, trucks, buses, and commercial vehicles.
Book

Honda R&D Technical Review: October 2012

2012-10-01
Honda's latest technical review features cutting-edge developments from Honda's worldwide R&D team. The October 2012 volume begins with the introduction of new technologies and includes 7 of the company's best technical papers, covering advancements in fuel cell systems, aerodynamic design system development, power products, and other fundamental technologies. Chapters include: • Styling Design of New Accord, CR-V and NC700 Series • Development of NC700 Series, NSF250R Road Racer, BF250 Motor • Development of CVT for Midsize Vehicle • Development of New Manual Transmission for Middle-Torque Engine • Development of Rare Earth-saving Magnet Using Localized Diffusion Method • Development of Anti-allergenic Compound for Durability of Automotive Seat Fabric • Verification Test of High Differential Pressure Water Electrolysis-type Solar Hydrogen Station (SHS2)
Book

Multi-Axle Vehicle Dynamics

2012-09-24
Commercial vehicles must transport an increasing volume of freight on a relatively fixed infrastructure. Some of these vehicles are highly specialized and customized to perform particular tasks. One way to increase freight hauling efficiency is to allow longer vehicles with more axles. These vehicles will have different handling properties and must be driven on existing infrastructure. Longer term, autonomous-like vehicles could be used to increase vehicle utilization. In both cases characterizations of multi-axle vehicle dynamics are required. A two-dimensional yaw plane model is used in practice to analyze handling performance of two-axle passenger cars. Commonly known as the "bicycle" model because it combines all tire forces associated with a given axle to act on the centerline of the vehicle, the yaw plane model allows lateral velocity and yaw rate degrees of freedom.
X