Refine Your Search



Search Results


Introduction to Advanced Manufacturing

Introduction to Advanced Manufacturing was written by two experienced and passionate engineers whose mission is to make the subject of advanced manufacturing easy to understand and a practical solution to everyday problems. Harik, Ph.D. and Wuest, Ph.D., professors who have taught the subject for decades, combined their expertise to develop both an applied manual and a theoretical reference that addresses many different needs. Introduction to Advanced Manufacturing covers the following topics in detail: • Composites Manufacturing • Smart Manufacturing • Additive Manufacturing • Computer Aided Manufacturing • Polymers Manufacturing • Assembly Processes • Manufacturing Quality Control and Productivity • Subtractive Manufacturing • Deformative Manufacturing Introduction to Advanced Manufacturing offers a new, refreshing way of studying how things are made in the digital age.

Advanced Concepts of GD&T 2009

The Advanced Concepts of GD&T 2009 coursebook is based on ASME Y14.5-2009. Topics covered are considered more complex and are often applied by specific industries, on specific types of components, or for specific situation. Examples in this book relate more closely with certain products and will be more complicated in nature, such as nonrigid parts, patterns of features as datum features, and more complex composite position and profile tolerancing. Many of the examples used include explanations of tolerancing concepts that may be problematic in the workplace. This coursebook requires the reader to already possess an understanding of the basics of GD&T and is intended for designers, product engineers, manufacturing and assembly engineers, CMM operators, and quality engineers.

The Future of Airplane Factory: Digitally Optimized Intelligent Airplane Assembly

The Future of Airplane Factory: Digitally Optimized Intelligent Airplane Factory defines the architecture, key building blocks, and roadmap for actualizing a future airplane factory (FAF) that is digitally optimized for intelligent airplane assembly. They fit and integrate with other FAF building blocks that aggregate to a Digitally Optimized Intelligent Airplane Factory (DOIAF). The word "intelligent" refers to the ability of a system to make right decisions and take right action in the highly dynamic and fluid environment of the modern airplane manufacturing space. The event-driven dynamics inherent in the complexity of this environment drive the need for expert knowledge which resides in intelligence systems incorporating the experience of experts. Expert knowledge need not be smart, brilliant, or possess genius as long as the outcomes are derived from right decisions resulting in right actions-applied rapidly to sustain an optimized factory enterprise.

Damage and Repair of Aerospace Composite Materials

Damage and Repair of Aerospace Composite Materials reports the latest developments on the detection and repair of composite structures from the perspective of ten SAE technical papers, especially chosen for this book. This micro-collection of papers offers an overview of composite utilization on large-scale commercial aircraft as well as an outline of general damage inspection and repair of composite structures. On the damage detection side, really important techniques are explained, including: • Porosity inspection of large composite panels. • Damage detection of large composites using acoustic ultrasonic and radio frequency methods. • Discrimination of damaged and undamaged composite panels using acoustic emission sensors. • Automated defect inspection system integrated in the production line by utilizing laser sensors and cameras.

Additive Manufacturing for Designers: A Primer

Additive Manufacturing, also known as AM or 3D printing, is a class of manufacturing processes that create objects by shaping material layer by layer. Having demonstrated the ability to produce miraculously complex geometries, it is broadly claimed that AM will have endless applications as the technology improves. However, underneath the hype surrounding this technology is a world of nuance and constraints as well as highly strategic applications. Additive Manufacturing for Designers: A Primer, written by Dr. Amy Elliott from Oak Ridge National Laboratory and Dr. Cynthia K. Waters from North Carolina A&T State University discusses the topics needed for a holistic understanding of the many micro and macro components of the world of 3D printing. Additive Manufacturing for Designers: A Primer takes the reader on a journey beginning with important aspects of AM part design and process dependence, including resolution and tolerance issues of interest to any manufacturer.

Adhesive Joining of Structural Components: New Insights and Technologies

Adhesive bonding has been used in the manufacture of primary aircraft fuselage and wing structures by various constructors since 1945. By a proper design, adhesive bonding often helps in designing structures mechanically equivalent to or even stronger than conventional assemblies. Adhesive Joining of Structural Components: New Insights and Technologies introduces the reader to some recent progress involved in adhesive joining of structural components. The chapters, seminal SAE International technical papers, cover the most recent advances in adhesive materials, surface preparation and controls, innovative bonding technologies, hybrid bonded/bolted joints, non-destructive testing and failure modelling of adhesively bonded joints. Edited by Dr.

Design for Additive Manufacturing: Concepts and Considerations for the Aerospace Industry

In the coming decades, the growth in AM will likely be driven by production parts that leverage this increase in design freedom to manufacture parts of higher performance and improved material utilization. Contrary to popular opinion, however, AM processes do have their constraints and limitations - not everything can be manufactured with AM, and even when it is feasible, not everything should. Design for Additive Manufacturing: Concepts and Considerations for the Aerospace Industry, edited by Dr. Dhruv Bhate, is a collection of ten seminal SAE International technical papers, which cover AM from the perspective of the appropriateness (should) and feasibility (can) of using AM for manufacturing of parts and tooling. Although AM technologies have been around for three decades, many in the industry believe that we are merely at the beginning of the revolution in the design-driven aspects of this technology.

Composite Materials Handbook Volume 2 - Revision H

An updated revision ("Rev. H") of the second volume of the CMH-17 compendium contains statistically-based data for polymer matrix composites that meets specific CMH-17 population sampling and data documentation requirements, covering material systems of general interest. Selected historical data from previous versions of the handbook that do not meet current data sampling, test methodology, or documentation requirements, but are still of potential interest to industry are also included in this volume. Seventeen new data sets with complete documentation and publicly available specifications were added in the new Revision H of the Composites Materials Handbook, Vol.2. The new data sets include carbon fiber and glass fiber composites. The Composite Materials Handbook, CMH-17, is a six-volume engineering reference tool that contains over 1,000 records of the latest test data for polymer matrix, metal matrix, ceramic matrix, and structural sandwich composites.

So You Want to Design Aircraft: Manufacturing with Composites

The market for aerospace composites is projected to reach $42.97 billion by 2022, up from $26.87 billion in 2017, at a CAGR of 9.85% from 2017 to 2022. Clearly, the use of aerospace composites in commercial aircraft has gained momentum during the past few decades, but there is still much room for growth and much more to learn. Lightweighting is generally considered to be the main driver for the increased and pervasive use of composites. However, beyond the contribution toward fuel efficiencies, composites also offer increased resistance against corrosion and part count reduction. Those corrosion characteristics, as well as fatigue properties, lead to lower maintenance costs over aircraft and components manufactured using traditional materials. Commercial aircraft are complex, sophisticated engineering marvels. And while introducing composites into new programs has added many benefits, it has also added complexity. This book aims to help manage and mitigate that complexity.

Materials Technology Gaps in Metal Additive Manufacturing

Metal additive manufacturing (MAM) is an exciting emergent technology that offers the possibility of democratizing metal manufacturing worldwide. Many believe it has the ability to revolutionize product manufacturing on a global scale. MAM will require a considerable design shift for manufacturers and, hence, will disrupt conventional thinking and require adaptation. Visionaries in the mobility industry can see the transformative possibilities after materials considerations are addressed./ Materials Technology Gaps in Metal Additive Manufacturing introduces the reader to various opportunities and relationships in the study of material technologies involved in metal-based additive manufacturing of aerospace and automotive parts. Everything starts and ends with the material feedstock, and the intermediate processes that affect a particular metal. Each of the choices in the complex integrated MAM system impacts final-part properties. Edited by Dr. Cynthia K.

Innovations in Automotive and Aerospace Assembly

Up until the last two decades, aluminum in airplanes and steel in automobiles were the primary materials used to produce these two complex machines. These metal-to-metal assemblies, and specifically the same-type metal-to-metal assemblies, have resulted in distinct manufacturing process advantages over decades of production. However, advances in material types have driven manufacturing to adapt and align the fabrication and assembly processes to continue to facilitate a quality product that is reliable, can be manufactured at a price point that is affordable and be manufactured in quantities that can be widely distributed. Dissimilar metal and composite material assemblies are now requiring highly complex manufacturing processes. Innovations in Automotive and Aerospace Assembly addresses how these new, disruptive materials usage are changing the manufacturing and production processes for the transportation industries.

Metallography of Steels: Interpretation of Structure and the Effects of Processing

Updated and translated by André Luiz V. da Costa e Silva This book is a combination of a metallographic atlas for steels and cast irons and an introductory textbook covering the fundamentals of phase transformations and heat treatment of these materials. Every important stage of processing, from casting to cold working is clearly discussed and copiously illustrated with metallographs that show the obtained structures, both desired and those achieved when deviations occur. First published in 1951 by Professor Hubertus Colpaert from the Institute for Technological Research (IPT) of São Paulo, Brazil, this book became one of the most important Brazilian references for professionals interested in the processing, treatment, and application of steels and cast irons.

The History of Metals in America

The History of Metals in America chronicles the development of metals as both an industrial activity and a science. Progress involving structural metals made possible the air, land, sea, and space travel of today, skyscrapers reaching over 100 stories high, and many other engineering accomplishments that continue to shape modern society. This lively book takes the reader on a fascinating journey through the evolution of metals and metallurgy from the beginning of iron production in colonial times with the first iron plant in 1645 to the prevailing metals of the 21st century. Each chapter describes the development of a metal or series of metal alloys, industry growth, and modern uses in manufacturing. It includes chapters on cast iron, wrought iron, alloy steels, tool steels, stainless steels, nickel-base superalloys, aluminum, and titanium. Other chapters cover the science of metals as it developed from 1890 to 1950 and the biographies of the pioneers of metals research.

Manufacturing System and Process Development for Vehicle Assembly

The evolution and execution of automotive manufacturing are explored in this fundamental manual. It is an excellent reference for entry level manufacturing engineers and also serves as a training guide for nonmanufacturing professionals. The book covers the major areas of vehicle assembly manufacturing and addresses common approaches and procedures of the development process. Having held positions as both a University Professor and as a Lead Engineering Specialist in industry, the author draws on his experience in both theory and application to fill the gap between academic research and industrial practices. This concisely written, comprehensive review discusses the sophisticated principles and concepts of automotive manufacturing from development to applications and includes: • 250 illustrations and 90 tables. • End-of-chapter review questions. • Research topics for in-depth case studies, literature reviews, and/or course projects. • Analytical problems for additional practice.

Managing Aerospace Projects

Over the next twenty years, the role and contributions of successfully managed projects will continue to grow in importance to aerospace organizations, especially considering the demands of emerging markets. The accompanying challenges will be how to effectively reduce product and process cost where known (incremental) and unknown (transformational) technological innovation is required. Managing Aerospace Projects brings together ten seminal SAE technical papers that support the vision of a more holistic and integrated approach to highly complex projects. Using the concept of project management levers, Dr.

So You Want to Design Aircraft: Robots on the Floor

It is ironic that as aircraft have gotten more sophisticated, much of their manufacture has remained manual. However, as orders for commercial aircraft have dramatically increased over the past years and are expected to remain on that trajectory, the competition has become not just about how fast new technologies can be put on the aircraft, but about how fast the aircraft can be manufactured and delivered. Enter ever increasing automation and robotics. Just as it has taken multiple years to reach the sophisticated content levels on current generation aircraft, so too has it been necessary to continually learn new ways and means to increase automation on the manufacturing floor. For both aircraft on the flight line and on the production line, safety is paramount.

Metallic Materials Properties Development and Standardization (MMPDS) Handbook - 12

The Metallic Materials Properties Development and Standardization (MMPDS) Handbook is an accepted source for metallic material and fastener system allowables, recognized by the Federal Aviation Administration (FAA), all departments and agencies of the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), within the limitations of the certification requirements of the specific government agency. 2017 saw the release of MMPDS-12, superseding MMPDS-11 and prior editions of the MMPDS, as well as all editions of its predecessor MIL-HDBK-5. The MMPDS Handbook is revised regularly to ensure that reliable, statistically-based design properties are available for as many mature materials and/or product forms as possible.

Additive Manufacturing of Aerospace Composite Structures: Fabrication and Reliability

Additive Manufacturing of Aerospace Composite Structures: Fabrication and Reliability introduces the reader to the current state of technologies involved in processing and design of polymer-reinforced fiber composites using additive manufacturing's automated fiber placement methods, through ten seminal SAE International papers. Currently, the material layup strategy in terms of process selection and manufacturability is usually not prioritized in the design phase. Engineers do not have a good way to see how their design choices can affect the manufacturing process beyond their initial structural-level considerations. The result is typically a large amount of experimental testing necessary to qualify the materials and structures typified in the classical building-block approach. Such an environment makes mistakes difficult to solve and, should redesign be required, obtaining reliable information is hard to piece together.

2009 Ultimate GD&T Pocket Guide 2nd Ed

The Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. ...This one-of-a-kind reference guide includes over 100 detailed drawings to illustrate concepts, more than 40 charts for quick reference, explanations of each GD&T symbol and modifier and much more...Written by standards expert Alex Krulikowski, this valuable on-the-job reference clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2009.